

Lucas Parra City College of New York

From Linear Regression to
Deep Neural Networks to

Segmentation

Lucas C Parra

 2

Lucas Parra City College of New York

Linear Regression

ŷ=w1 x+w 0

x

y

w0
1
w1

e= ŷ− y

(xn , yn)

E(w1 ,w0)=∑n
(en)2

ŵ1 , ŵ0=argmin
w1 , w0

E (w1 ,w0)

Cost function
Mean square error

Learning

Model

Error

Data (xn , yn), n=1 ...N

(ŵ1, ŵ0)

w0

w1

x 1

ŷ

 3

Lucas Parra City College of New York
Revisiting segmentation by fitting the background
intensity and thresholding:

Linear model with quadratic error

has closed from solution:

E(w)=∑n
(yn −wT⋅ xn)2

ŵ=(∑n
xn ⋅ xTn)

−1
⋅(∑n

xn ⋅ yn)

Notice that subtraction and thresholding is a linear operation
followed by nonlinearity

>> [X,Y] = meshgrid(1:size(img,2),1:size(img,1));
>> img = img – mycurvefit(img,X,Y); % linear prediction from X,Y
>> img = img > graythresh(img); % nonlinearity

Making position of the input also a feature to predict the output is
called “position encoding” in machine learning.

function Zest = mycurvefit(Z,X,Y)
% Zest = mycurvefit(Z) fit Z to be approximated by
% Zest=w1+w2*X+w3*Y+w4*Y^2 in a least squares sense.
dims = size(Z); [X,Y] = meshgrid(1:dims(2),1:dims(1));
woptimal = [ones(size(Z(:))) X(:) Y(:) Y(:).^2]\Z(:);
Zest = mycurve(woptimal,X,Y);

function Zest = mycurve(p,X,Y);
Zest = w(1)+w(2)*X+w(3)*Y+w(4)*Y.^2;

This segmentation code could be called a “single layer dense
network with position encoding”.

=R xx
−1⋅Rxy=x∖ y

 4

Lucas Parra City College of New York
Revisiting segmentation by fitting the background
intensity and thresholding:

Linear model with quadratic error

has closed from solution:

E(w)=∑n
(yn −wT⋅ xn)2

ŵ=(∑n
xn ⋅ xTn)

−1
⋅(∑n

xn ⋅ yn)

Notice that subtraction and thresholding is a linear operation
followed by nonlinearity

>> [X,Y] = meshgrid(1:size(img,2),1:size(img,1));
>> img = img – mycurvefit(img,X,Y); % linear prediction from X,Y
>> img = img > graythresh(img); % nonlinearity

Making position of the input also a feature to predict the output is
called “position encoding” in machine learning.

function Zest = mycurvefit(Z,X,Y)
% Zest = mycurvefit(Z) fit Z to be approximated by
% Zest=w1+w2*X+w3*Y+w4*Y^2 in a least squares sense.
dims = size(Z); [X,Y] = meshgrid(1:dims(2),1:dims(1));
woptimal = [ones(size(Z(:))) X(:) Y(:) Y(:).^2]\Z(:);
Zest = mycurve(woptimal,X,Y);

function Zest = mycurve(p,X,Y);
Zest = w(1)+w(2)*X+w(3)*Y+w(4)*Y.^2;

This segmentation code could be called a “single layer dense
network with position encoding”.

=R xx
−1⋅Rxy=x∖ y

 5

Lucas Parra City College of New York

Logistic Regression

ŷ=f (w1 x+w0)

x

y
1

E(w1 ,w0)=∑n
cnCost function

Learning

Model

Cost
(binary cross entropy)

Data

0

(xn , yn), n=1 ...N

c=− y log ŷ−(1− y) log(1− ŷ)

ŷ

x 1

ŵ1 , ŵ0=argmin
w1 , w0

E (w1 ,w0)

ŷ=f (x)= exp (x)
1+exp(x)Sigmoid

Sigmoid

 6

Lucas Parra City College of New York

Perceptron

Model ŷ i=f i(∑ j
wij x j)

ŵ ij=argmin
w ij

E (wij)

Cost function

Learning

Model

E(wij)=∑n∑i
ci
n

(x1
n ... xDx

n , y1
n ... yD y

n) , n=1 ...N

ŷ1 ŷ2

x1 x2 x3=1
w ij

Cost
(categorical cross entropy)

c i=− y i log ŷ i

Data

“Dense network layer”

ŷ i=f i(x1 ... xD)=
exp(x i)

∑i
exp(x i)

Softmax

Softmax

Think of xi as the strength of
evidence for class i

 7

Lucas Parra City College of New York

Gradient Descent

w1,2

w1,1 ŵ ij

Δ wij=−λ dEdw ij

Δ wij
n =−λ

d (en)
dw ij

Stochastic Gradient descent for sample n

Gradient descent

ŵ ij=argmin
w ij

E (wij)

w1,2

w1,1

 8

Lucas Parra City College of New York

Multilayer Perceptron

a i
l= f i

l(∑ j
wij
l a j

l−1)
ŷ1 ŷ2

a1

a2

a3
Model

Layers l=0 ...L

a0 x1 x2

Gradient back propagation

g j
l−1=∑i

f i
l ' wij

l gi
l

g1

g2

g3

g0

a i
0=x i

gi
L=2ei

Stochastic Gradient
descent:

Δ wij
l =−λ f i

l ' gi
l a j
l−1

E=∑n∑i
| e i
n |2Cost function

e= ŷ− y

w ij
1

w ij
2

w ij
3

Not power, just layer index

“3 dense network layers”

a=max (0 , x)ReLU
x

 9

Lucas Parra City College of New York

Example: NIST digit classification

Osvaldo Velarde:

Introduce google colab.

Present example in python from

“Deep Learning with Python” Book by François Chollet, 2nd edition, Manning.

Chapter 2, MNIST digit classification with 2 layer dense network.

 10

Lucas Parra City College of New York

Convolutional Neural Network (CNN)

a i
l= f (∑k

w k a i−k
l−1)

Weights are shift invariant:

w ij=w i− j=wk

i.e. all units have the same weights; weights are “tied”

Gradient update is summed over all “tied” weights*

Model

Δ wk
l =−λ∑i

f i
l ' gi

la i−k
l−1

w1w2w3

a i
l

a j
l−1

* this is true for any kind of weight symmetry that shares weights

“convolution layer”

 11

Lucas Parra City College of New York

Pooling

a i
l=max(ai

l−1 , ai−1
l−1)

0.3

Reduce resolution by taking the maximum or mean, e.g.

The gradient only propagates to the units that
contribute to the pooled value, e.g. gradient is zero for
units that were not selected in the maximum.

0.3 0.1

a i
l

a j
l−1

gi
l

g j
l−1

Other forms of reducing resolution with convolution:

Stride – skip intermediate pixels; is the same as weighted average pooling.
Downsampling – same as weighted average pooling but with predefined weights.
“valid” – reduce size at the boundary, bonus: avoids edge artifacts.

“pooling layer”

 12

Lucas Parra City College of New York

Deep CNN
Layers can be stacked up into deep networks. With CNN, typically
decreasing spatial resolution while increasingly number of
“channels”

 13

Lucas Parra City College of New York

CNN features
Increasing complexity of features in successive layers.

 14

Lucas Parra City College of New York

Deep network tricks
Equations for activation, gradients, and weight updates have all been automated, e.g. in TensorFlow or Pytorch. All
that is needed is to define the network architecture, e.g. in Keras.

Deep networks with many layers have a number of problems, but also remarkably effective heuristic solutions
(some keywords for independent study):

Repeated multiplication with f’ causes vanishing gradients in deep layers. Solutions:

● ReLU non-linearity
● Batch normalization

Repeated mixing with ∑j wij causes diluted gradients in deep layers (my wording). Solutions:
● Residual connections
● Max pooling
● Attention gating

With millions of free parameters over-training is the norm. Solutions:
● Tying weights (symmetry)
● Dropout
● Early stopping
● Self supervised learning
● Transfer learning

 15

Lucas Parra City College of New York

Segmentation with UNets

“Residual connection”

 16

Lucas Parra City College of New York

Downsampling by 2: low-pass and then take every other sample,
e.g. “mean pooling” with “stride” 2.
Umsampling: insert zeros and then filter with point spread function.
“Transpose convolution”

Constant weights Linear weight

Down and up-sampling

Stride 2
Upsampling 2
kernel 2

Stride 2
Upsampling 2
kernel 3

 17

Lucas Parra City College of New York

Example: Neuron segmentation

Osvaldo Velarde

Present example of UNet in colab for segmenting 2D phase contrast images of neurons.

 18

Lucas Parra City College of New YorkDown and up-sampling

Constant weights Linear weights
w=[1 1

1 1] w=[0.25 0.50 0.25
0.50 1.00 0.50
0.25 0.50 0.25]

This is TensorFlow default initialization and
tends to cause grid-artifacts. Needs to “learn” to
avoid them.

Optimal without need to learn. Weights can be
set fixed.

