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Linear Regression
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Revisiting segmentation by fitting the background 
intensity and thresholding:

Linear model with quadratic error

has closed from solution:

  

E(w )=∑n
( yn −wT⋅ xn )2

ŵ=(∑n
xn ⋅ xTn )
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⋅(∑n

xn ⋅ yn )

Notice that subtraction and thresholding is a linear operation 
followed by nonlinearity

>> [X,Y] = meshgrid(1:size(img,2),1:size(img,1));
>> img = img – mycurvefit(img,X,Y); % linear prediction from X,Y
>> img = img > graythresh(img);     % nonlinearity

Making position of the input also a feature to predict the output is 
called “position encoding” in machine learning.

function Zest = mycurvefit(Z,X,Y)
% Zest = mycurvefit(Z) fit Z to be approximated by 
% Zest=w1+w2*X+w3*Y+w4*Y^2 in a least squares sense.
dims = size(Z); [X,Y] = meshgrid(1:dims(2),1:dims(1));
woptimal = [ones(size(Z(:))) X(:) Y(:) Y(:).^2]\Z(:);
Zest = mycurve(woptimal,X,Y);

function Zest = mycurve(p,X,Y);
Zest = w(1)+w(2)*X+w(3)*Y+w(4)*Y.^2;

This segmentation code could be called a “single layer dense 
network with position encoding”. 

=R xx
−1⋅Rxy=x∖ y
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Revisiting segmentation by fitting the background 
intensity and thresholding:
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called “position encoding” in machine learning.
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Zest = mycurve(woptimal,X,Y);

function Zest = mycurve(p,X,Y);
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This segmentation code could be called a “single layer dense 
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Logistic Regression
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Perceptron
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Gradient Descent
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Multilayer Perceptron

a i
l= f i

l(∑ j
wij
l a j

l−1)
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a=max (0 , x )ReLU
x
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Example: NIST digit classification

Osvaldo Velarde:

Introduce google colab. 

Present example in python from

“Deep Learning with Python” Book by François Chollet, 2nd edition, Manning.

Chapter 2, MNIST digit classification with 2 layer dense network.  
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Convolutional Neural Network (CNN)
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Weights are shift invariant: 
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i.e. all units have the same weights; weights are “tied”

Gradient update is summed over all “tied” weights*
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* this is true for any kind of weight symmetry that shares weights  

“convolution layer”
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Pooling
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Reduce resolution by taking the maximum or mean, e.g.

The gradient only propagates to the units that 
contribute to the pooled value, e.g. gradient is zero for 
units that were not selected in the maximum. 
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Other forms of reducing resolution with convolution:

Stride – skip intermediate pixels; is the same as weighted average pooling.
Downsampling – same as weighted average pooling but with predefined weights. 
“valid” – reduce size at the boundary, bonus: avoids edge artifacts. 

“pooling layer”
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Deep CNN
Layers can be stacked up into deep networks. With CNN, typically 
decreasing spatial resolution while increasingly number of 
“channels”
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CNN features
Increasing complexity of features in successive layers.
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Deep network tricks
Equations for activation, gradients, and weight updates have all been automated, e.g. in TensorFlow or Pytorch. All 
that is needed is to define the network architecture, e.g. in Keras.

Deep networks with many layers have a number of problems, but also remarkably effective heuristic solutions 
(some keywords for independent study):
 
Repeated multiplication with f’ causes vanishing gradients in deep layers. Solutions:

● ReLU non-linearity
● Batch normalization

Repeated mixing with ∑j wij causes diluted gradients in deep layers (my wording). Solutions:
● Residual connections
● Max pooling
● Attention gating

With millions of free parameters over-training is the norm. Solutions: 
● Tying weights (symmetry)
● Dropout 
● Early stopping
● Self supervised learning
● Transfer learning
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Segmentation with UNets

“Residual connection”
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Downsampling by 2: low-pass and then take every other sample, 
e.g. “mean pooling” with “stride” 2.
Umsampling: insert zeros and then filter with point spread function. 
“Transpose convolution”

Constant weights Linear weight

Down and up-sampling

Stride 2
Upsampling 2
kernel 2

Stride 2
Upsampling 2
kernel 3
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Example: Neuron segmentation

Osvaldo Velarde

Present example of UNet in colab for segmenting 2D phase contrast images of neurons.  
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Constant weights Linear weights
w=[1 1

1 1] w=[0.25 0.50 0.25
0.50 1.00 0.50
0.25 0.50 0.25 ]

This is TensorFlow default initialization and 
tends to cause grid-artifacts. Needs to “learn” to 
avoid them. 

Optimal without need to learn. Weights can be 
set fixed.


