How does Direct Current Stimulation (DCS) work?

DCS boosts <u>Hebbian</u> plasticity

Biomedical Engineering, City University of New York

Brain Stimulation, Vancouver, February 2019

Disclosure

Co-inventor in patents held by the City University of New York.

Co-founder of Soterix Medial, Neuromatters and Kcore Analytics – startup efforts to make neurotechnology broadly available.

Clinical perspective on mechanism of tDCS

Cathode (-) decreased excitability

Anode (+) increased excitability

Perhaps too simplistic

Direct currents cause complex E-fields

Abhi Asif Datta Rahman

 Strongest E-field not always under the stimulation electrodes

Datta, Brain Stimulation, 2009

Rahman, J Physiology, 2013

 Cortical gyration cause mixed polarity E-fields

Model validation in human

Yu Huang Anli Liu

Huang, Liu, eLife, 2017

E-field models are generaly accurate

Yu Huang Anli Liu

 Magnitude and spatial distribution of E-field generated by TES reasonably well predicted.

TES can reach deep targets

- Maximum cortical stimulation for $2mA \rightarrow 1 \text{ V/m}$
- Deep targets can be equally strong
- Individual subject anatomy matters

Yu Huang Anli Liu

Huang, eLife, 2017

Yu Huang

- Free
- Fast: 10~30 min
- Fully automated
- Easy to use

>> roast('subject.nii',{'F1',2,'P2',-2})

parralab.org/roast

Huang et al. Realistic vOlumetric-Approach to Simulate Transcranial electrical stimulation, *bioRxiv*, 2019

Stimulation intensity

- "Intersectional Pulsed Stimulation" (IPS) uses multiple 1mA electrodes to achieve stronger stimulation in depth.
- Targeting of IPS is equivalent to High Definition TES which can be optimized.

Huang, Brain Stimulation, 2018

Yu Huang

Fields polarize the membrane linearly

Bikson, J Physiology, 2004

Long term effects?

Hypothesis: Long term effects are mediated by synaptic plasticity

Hypothesized mechanism:

- E-fields polarize the membrane.
- In "Hebbian" plasticity the membrane depolarization captures post-synaptic activity.

Prediction:

• E-field interact with long-term synaptic plasticity via membrane depolarization.

Plasticity induction + DC stimulation

• Induce long term potentiation/depression (LTP/LTD) in vitro in hippocampus.

Greg

Kronberg

• Record synaptic efficacy with field excitatory postsynaptic potentials (fEPSP).

LTP & LTD are both modulated

- Cathodal DCS
- control

Depolarizing field \rightarrow stronger synapses

Frequency-response function 1.4 -* Synaptic strength 1.2-0.8 0.6-0.5 20 5 Tetanus frequency (Hz)

Greg Kronberg

Affected pathway depends on polarity

DCS effect requires LTP

No activity \rightarrow no effect

No NMDAR \rightarrow no effect

Greg Kronberg

Conclusions of tetanus-induced LTP/LTD:

DCS effects on synaptic strength are specific:

- Needs synaptic plasticity to affect plasticity
- Tends to potentiate, not depress synapses
- Cathodal vs anodal effect specific to dendritic location

Kronberg, Brain Stimulation, 2017

Kronberg

Polarity interacts with type of activation

Greg Asif Kronberg Rahman

Theta burst stimulation (TBS): HF burst repeated at 7Hz.

Bias towards potentiation

Greg Asif Kronberg Rahman

Bias towards potentiation

Greg Asif Kronberg Rahman

1.8 Relative fEPSP slope Ŧ 1.6 \rightarrow 1% in 1V/m Cathodal Inodal 1.4 1.2 TBS **EPSP** -20 20 -10 10 Electric field (V/m) soma hyper-polarizing soma depolarizing

Human tDCS

Instantaneous E-field is relevant

Greg Asif Kronberg Rahman

Kronberg, *bioRxiv*, 2019

80

Greg Asif Kronberg Rahman

TBS slope 2.6 2.4 **fepsp** 2.2 Rec 2.0 nodal 1.8 Normalized 1.6 1.4 1.2 TBS 1 10 20 30 40 50 60 70 8(Time (min)

Specific to the potentiated pathway

Greg Asif Kronberg Rahman

Specific to the potentiated pathway

Weakly activated pathway is not enhanced.

Associative

Strong stimulation induces LTP in weakly co-activated pathway. This associative effects is preserved and enhanced with DCS.

Strong+Weak Õ 0 2.6 2.4 2.2 2.0 ĥ 1.8 ed 1.6 Normalize 1.4 1.2 1.0 20 10 30 40 50 60 70 80 0 Time (min)

Greg Asif Kronberg Rahman

Conclusion

DCS boosts Hebbian plasticity:

- Effect dependent on potentiating neural activity
- Specific to activated pathway
- Follows associative rule of learning

Clinical implications

Postulate

Human tDCS effects are highly task specific because they inherit exquisite specificity of Hebbian plasticity.

Predictions on tDCS:

- Efficacy improves when paired with a learning task instead of rest.
- Specificity comes from the task not focality of stimulation.
- Performance gains should be specific to the trained task.

Acknowledgments

<u>Funding</u> NIH/NSF – CRNCS NIH/NINDS NIH/NIMH USAF NYU

Code, data, papers: parralab.org

