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Abstract

Independent component analysis (ICA) and blind source separation
(BSS) are related data analysis problems that have received considerable
attention in the machine learning community during the last few years.
This article gives a �rst year graduate level introduction to the subject.
It treats the problem of �nding independent components in an instan-
taneous linear mixture, and addresses the related subject of separating
convolutive mixtures typical of an acoustic environment. After a straight-
forward derivation of a basic algorithm statistical independence is placed
in a broader context of information principles such as redundancy reduc-
tion, minimum mutual information, and maximum information transmis-
sion. The relationship of statistical independence to higher order statis-
tics, and entropy estimation is outlined. As we focus in particular on time
series additional temporal statistics can be used to identify the unknown
sources. To achieve separation in an ordered set, such as a time series,
one can exploit non-stationarity and temporal correlations. This stays in
contrast the common approach, which concentrates on higher order statis-
tics of independent samples. This idea is carried over to the problem of
convolutive mixtures, and a frequency domain algorithm is derived. It
�nds a multi-path �lter that separate sources simultaneously recorded in
a realistic acoustic environment.

1 ICA

1.1 Examples of linear mixtures of independent

components

Independent component analysis (ICA) and blind source separation (BSS)
refer to the problem of recovering statistically independent signals from a
linear mixture. There is a variety of situations where we observe signals
that originated as combination of independent processes or sources. Here
are just a few examples:

� Cocktail-Party-Problem: Sound amplitudes in a acoustic environ-
ment add up linearly. Multiple sound sources such as speakers, mu-
sic or noise sources are measured by the microphones as a mixture.
The question is, how can one recover the individual speakers?

� Hyper-spectral sub-pixel identi�cation: Hyper-spectral imagery con-
sists of a set of images taken at di�erent wavelengths - currently up
to 200. Every material on the surface, i.e. rock, grass, trees, snow,
etc. have di�erent re
ection coe�cients at every wavelength. The
area corresponding to a pixel contains usually a mixture of di�er-
ent surface materials, as the resolution is still in the range of a few
square meters. The intensities in every pixel is therefore a linear
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combination of the abundances of a materials and the re
ection co-
e�cients of each material. The problem is then, how to identify the
surface materials and their abundance?

� Passive sonar: In passive sonar a large number of sensors (micro-
phones) records signals originating form multiple sources such as
shrimp noise, submarines engines, boats, etc. Every sensor records
a di�erent mixture as they are places in di�erent locations and the
amplitudes vary with distance form the sources. The task is to sep-
arate and identify the sound sources.

E�ectively we �nd the problem of recovering sources from a linear mix-
ture whenever there is independently generated signals, s = [s1; :::; sds ]

>,
a linear medium A, and a number of sensors to detect the mixtures
x = [x1; :::; xdx ]

>, with x = As. In the cocktail-party problem the time
dependent sources s(t) correspond to ds multiple speakers, while the mix-
tures parameters A correspond to the room response characteristic. In the
hyper-spectral sub-pixel demixing problem the sources are the wavelength
dependent re
ectance s(�) of the ds di�erent materials. The material
abundances in the dx di�erent pixels represent the mixture coe�cients A,
while x(�) represents the image at every spectral band �.

For time sequences s(t) we call a mixture instantaneous if only signals
from the immediate time t mix, i.e. x(t) = As(t). A convolutive mixture
on the contrary may include time delays and echos x(t) =

P
� A(� ) s(t).

The hyper-spectral mixture explained above corresponds to the `instan-
taneous' case since the wavelengths � are not a�ected by the abundances,
x(�) = As(�). Sound, however, travels slow compared to the distances
of a typical acoustic environment, and the mixture is therefore convo-
lutive. First the instantaneous mixture problem will be discussed. The
convolutive case is treated in section 4.

1.2 Basic assumptions

Assume a source vector s 2 Rds , sampled according to density distribu-
tion p(s), where the coordinates are statistical independent, i.e.

p(s1; :::; sds) = p(s1)p(s2):::p(sds): (1)

The sources s are not observed directly nor is the particular form of
the individual distributions p(si) known, hence the name blind source
separation. Further assume the coordinates are "mixed" linearly:

x = As (2)

and we observe only the mixture x 2 Rdx

Task: Given a set of such x �nd A and therefore the original independent
sources s.
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Note that any permutation and scaling of independent variables re-
mains independent. In fact, in the following sections the recovered model
sources are often referred to as coordinates y, generated by some linear
inversion, y = Wx. Statistical independence speci�es the model sources
y only up to an arbitrary scaling, expressed here as a diagonal matrix D,
and permutation P , i.e. s = PDy. For simplicity this will be ignored in
the notation at times, and we identify the estimated sources as ŝ = y.

1.3 ICA from Maximum Likelihood

Whenever something is known about the probability of the generating
process one should think of using Maximum Likelihood (ML), as it ex-
plicitly utilizes that knowledge in the parameter estimation1). In ML one
needs to express the probability of the data for given parameters in terms
of the assumed model distribution. In the present case we need

px(xjA) in terms of ps(s)

Recall that a change of variable in a density will involve the Jacobi
determinant of the transformation

px(x) = jds=dxjps(s) (3)

In terms of the inverse A�1 � W = [w1; :::;wds ]
> and using (1) this

leads to

px(xjW ) = jW j ps(Wx) = jW j
dsY
i=1

psi(w
>
i x) (4)

Consider a set of N independent, and identically distributed (i.i.d.)
such observations x1; :::;xN . The likelihood of observing the entire dataset
is then

p(x1; :::;xN jW ) = jW jN
NY
j=1

dsY
i=1

psi(w
>
i xj) (5)

The ML estimate of A or equivalently its inverse W is now given by

WML = argmax
W

ln p(x1; :::; xN jW ) (6)

To maximize the log-likelihood one can use stochastic gradient ascent.
This means we apply the gradient with respect to W of the log-likelihood
of every sample j,

1See [9] for Maximum Likelihood
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@ ln p(xj jW )

@W
=W�> + ujx

>
j (7)

with u = [@ ln p(s1)=@s1; :::; @ ln p(sds)=@sds ]
>. Note that obtaining the

inverseW�1 at every sample is computationally intensive. Instead of tak-
ing the actual gradient, however, one can take its product with a positive
de�nite matrix W>W . The resulting, so called natural gradient, �rst in-
troduced in [1], has a positive inner product with the original gradient,
and points therefore into the same overall direction. This results now in
the following update rules with a learning constant �,

�W = �
�
W + us

>W
�

(8)

As the individual source distributions p(s) are unknown, one can rep-
resent them with an appropriate parametric model p(sj�), and obtain a
likelihood p(xjW;�) with additional parameters �. We �nd then the op-
timal parameter using additional gradients of the likelihood with respect
to �. In �gure 4 of section 3.1 a mixture model2 is used, and the mixture
parameters are determined in the same ML formalism.

1.4 PCA and ICA

It is interesting to note that the well known Principal Component Analysis
(PCA) represents a special case of ICA under the two following constraints

� W are restricted to rotations, i.e W�1 =W>

� s is Gaussian distributed, i.e. p(s) = (2��)�1=2 exp(�s2=(2�))
To see this consider the ML solution (6). At the solution the sum o�

the gradients (7) for all data must vanish,

0 = NW�> +
NX
j=1

ujx
>
j , or equivalently W

�> = � 1

N

NX
j=1

ujx
>
j (9)

For a Gaussian distribution we have u = @ ln p(s)=@s = �s=�, and using
the notation � = diag(�1; :::; �ds) one can write

W�> =
��1

N

NX
j=1

sjx
>
j =

��1

N

NX
j=1

Wxjx
>
j = ��1WRx (10)

Further using W�1 =W> we obtain,

Rx =W�W> (11)

The solutions of (11) are the rotations W that diagonalize the covari-
ance matrix, which is one de�nition of PCA.

2see [9] for mixture models.
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Figure 1: Schematic representation of a network parametrized by w that should
transform observations x into statistical independent variables (y1; :::; yN )

> = y

1.5 Minimal Mutual Information

The ML approach treat ICA as a fairly straight forward parameter estima-
tion problem. In this and the following section we will take a more general
view of statistical independence base on information theoretic principles.

Assume we are given samples of random variables (x1; :::; xN)
> = x

distributed according to a probability density function p(x). Furthermore
consider a process that generates for a given x variables [y1; :::; yN ]

> = y

distributed according to p(yjx;w). The transformation may be imple-
mented by a (stochastic) neural network, where w is then the parameter
vector of the network (see �gure 1). The resulting output distribution is
given by,

p(yjw) =

Z
dxp(yjx;w)p(x) (12)

The purpose of this transformation is to obtain a new representation of
x such that the new variables are statistical independent. Mathematically,
statistical independence is expressed by the fact that the joint probability
density of the variables y1; :::; ydy factors,

p(y1; :::; ydy ) = p(y1)p(y2):::p(ydy ) =

dyY
i=1

p(yi) (13)

We will consider now di�erent objective functions that measure how
well the generated density (12) factors to produce independent compo-
nents according to (13).

An intuitive notion of independent variables is that they carry inde-
pendent information. In other words, they carry minimal or no common or
mutual information (MMI). According to Shannon the entropy H[p(y)] of
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a probability density p(y) captures how much information can be encoded
by the random variable y,

H[p(y)] = �
Z

dyp(y) ln p(y) (14)

The information that is common to the variables yi is measured by
their mutual information [5],

MI[y1; :::; ydY ] =

dyX
i=1

H[p(yi)]�H[p(y)] (15)

The second term represents the joint entropy of the distribution, while
the �rst term is the sum of the single coordinate entropies. Note that this
expression is identical to the Kullback-Leibler distance (KLD) of the joint
density (12) and the factorization (13),

KLD[p(y);
Y
i

p(yi)] =

Z
dyp(y) ln

 
p(y)Qdy
i=1 p(yi)

!

=

dyX
i=1

H[p(yi)]�H[p(y)]

(16)

The KLD is a common distance measure between two distributions
[5], and captures here how well (12) factors. Mutual information will
be therefore minimal, in fact zero, if the variables represent independent
components.

Consider now a deterministic and invertible functional relation y =
f(x;w). We have then p(yjx;w) = �(y� f(x;w)) and (12) reduces to,

py(yjw) =

����@x@y
���� px(f�1(y;w)) (17)

Taking the logarithm and the expectation over p(x;y), denoted as h:::i,
we obtain,

H[p(yjw)] = H[p(x)] +

�
ln

����@x@y
����
�

(18)

If in addition the Jacobi determinant of the transformation is unity,��� @x@y ��� = 1, i.e. we have a volume conserving transformation, one can

see that the information content of the input is equal to the information
content of the output, i.e. H[p(yjw)] = H[p(x)]. Since the entropy of
the input density does not depend on the parameters w, minimizing the
mutual information (15) is in such a case equivalent to minimizing the
entropy of the individual output coordinates. These considerations not
only apply for linear but for any invertible non-linear transformation.
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1.6 Maximum Transmitted Information

Surprisingly we �nd that under di�erent conditions also maximizing the
entropy of the output variables can lead to statistical independence. Con-
sider the information that is common to the variables x and y, that is,
the information3 transmitted through the mapping x! y,

MI[p(x); p(y)] = H[p(y)]�H[p(xjy)] (19)

The second termmeasures the randomness of the mapping. It has been
argued [3] that for a deterministic mapping as discussed above, the second
term can be ignored. Maximizing the transmitted information is therefore
equivalent to maximizing the entropy of the output itself, and is sometimes
referred to as the InfoMax principle. Now, if every coordinate of the
output is bounded by constants the maximum entropy will be given by a
uniform distribution with, in fact, independent coordinates. In particular
consider a linear transformation W with a bounded non-linearity g(u)
applied at each individual output (see �gure 2),

y = g(Wx) (20)

In [15] it is shown more explicitly that if variables x were obtained
from statistical independent coordinates (s1; :::; sN )> = s, distributed
according to p(si), by a linear invertible transformation A,

x = As ; (21)

then maximizing the transmitted information (19) with respect to W will
converge towards W � = PDA�1. The matrices P and D are some ap-
propriate permutation and diagonal scaling matrix, and do not change
the fundamental result that W � is an inversion of the mixing process A.
These result holds only if the non-linearity matches the source density
according to p(y) = @g(y)

@y
. Maximum entropy or maximum transmitted

information is under these circumstances therefore equivalent to �nding
linear independent components.

2 Higher order statistics, and entropy es-

timation

2.1 Statistical independence and higher order statis-

tics

Statistical independence is inherently linked to the issue of higher order
statistics. The relation can be expressed fairly directly. For two random

3This expression is e�ectively the mutual information between input and output, and di�ers
from the mutual information of the output coordinates discussed in the previous section.
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x y
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W

Figure 2: Maximizing the information transmitted through this network (top)
generates independent components at the output. At the bottom the distribu-
tions of a typical two dimensional case are depicted. If the non-linearity has been
properly chosen, maximum transmitted information is equivalent to maximum
entropy at the output. Its maximum in turn is for bounded non-linearities the
uniform distribution (bottom, left) and is in fact statistical independent. It can
be reached only if the output of the linear transformation Wx is independent
as well (bottom, center).
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variables a, and b

p(a; b) = p(a)p(b) $ hf(a)g(b)i = hf(a)i hg(b)i (22)

where h:::i corresponds to the expectation over the random variables. In
particular the higher moments of statistical independent variables satisfy

hanbmi = hani hbmi for all n;m (23)

Therefore, given a good estimate of all higher moments and cross-
moments, one can verify if the variables are statistical independent. By
optimizing the linear transformation W , such that all moments factor,
one can obtain independent components. In practice in such an approach
one has to restrict to a limited number of moments. By doing so, one is
e�ectively making an assumption as of which moments are important to
represent the density p(a) and p(b).

In the previous sections we could ignore higher order statistics since
they were included implicitly through the derivative of the model source
densities @p(s)=@s or equivalently through non-linearities g().

In the case of known source densities we saw that with the ML and
the InfoMax approach we may limit ourself to f(a) = a. For that case
much work has been done to show which choice of g() or equivalently
the derivative of p(b) is appropriate for a particular class of underlying
distributions.

In the case of unknown source densities one can try to approximated
the distributions by using the higher order statistics explicitly. With the
MMI approach described before one can limit oneself to measuring single

coordinate statistics. In that case the entropy of the model variables yi
has to be estimated and minimized. This will be outlined in the following
section. Alternatively one can also try to �nd model sources that satisfy
multi-coordinate conditions of the sort of (23) among the di�erent model
sources. This involves cross-moments or cross-cumulants, which will be
discussed in section 2.4.

2.2 Entropy estimation and ICA

In a sense all higher order techniques represent di�erent approximations
of the density function of the model sources p(y) required in any of the ap-
proaches discussed so far (ML, minimal mutual information, or InfoMax).
They all relate to the fundamental problem of how to estimate the entropy
H[p(y)] of a continuous variable, given a limited number of observations
y1; y2; :::; yN . The entropy to be optimized is usually approximated as,

H[p(y)] =

Z
dy p(y) ln p(y) �

NX
j=1

ln p̂(yj) (24)
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where p̂(y) represents some estimate of p(y).
The subject of density estimation goes far beyond the scope of this

presentation (see [9]). But in principle one divides between parametric
and non-parametric techniques for estimating a density.

A parametric technique de�nes a family of density functions p(yj�)
in terms of a set of parameters �. The parameters are then optimized,
e.g. with ML, so that the density function corresponds to the observed
samples. In the context of ICA di�erent parametric representations p(yj�)
have been used. Examples include mixture models, as in the example of
�gure 4, and generalized Gaussian.

The non-parametric techniques usually de�ne the estimated density
directly in terms of the observed samples y1; :::; yN , i.e. p(yjy1; :::; yN ).
For small datasets, i.e. small N, they are often faster and simpler to obtain
as they do not require any adaption or training process. The best known
non-parametric estimate is the histogram, which is fairly data intensive.
Somewhat less data is required by the Parzen-Windows method [9]. Other
non-parametric techniques are based on higher moments [13], e.g. Gram-
Charlier expansion, Parson densities, or on higher cumulants [13], e.g.
Edgeworth expansion. These techniques require less data as they make
some general assumptions about the distributions, e.g. a single central
mode, symmetry, Gaussian tails, and the like.

2.3 Entropy estimation with cumulants

Here we will demonstrate the use of cumulants for entropy estimation,
and optimization with the objective of �nding independent components.

In a seminal paper, e�ectively de�ning the term ICA, Comon [4] sug-
gests to use the Edgeworth expansion of a probability distribution. This
expansion is an analytic expression of the entropy in terms of measurable
higher order cumulants. Edgeworth expands the multiplicative correction
to the best Gaussian approximation of the distribution in the orthonormal
basis of Hermite polynomials h�(y). The expansion coe�cients are basi-
cally given by the cumulants c� of the distribution p(y).4 The Edgeworth
expansions reads for a zero-mean distribution with variance �2, see [13],

p(y) = 1p
2��

e
� y2

2�2 f(y)

f(y) = 1 + c3
6�3

h3(
y
�
) + c4

24�4
h4(

y
�
) + c5

120�5
h5(

y
�
) + :::

(25)

Note, that by truncating this expansion at a some order, we obtain
an approximation, which may not be strictly positive. Figure 3 shows a
sampled exponential distribution with additive Gaussian noise.

4Cumulants c� can be expressed in terms of moments m�. The �rst �ve cumulants for a
zero mean distribution (c1 = m1 = 0) are given by: c2 = m2; c3 = m3; c4 = m4 � 3m2

2; c5 =
m5 � 10m3m2. Moments can be estimated with the sampled data points fy1; ::; yNg: m̂� =
1
N

PN
i=1 y

�
i
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Figure 3: Doted line: exponential distribution with additive Gaussian noise
sampled with 1000 data points. (noise-variance/decay-constant = 0.2). Dashed
line: Gaussian approximation equivalent to the Edgeworth approximation to
second order. Solid line: Edgeworth approximation including terms up to fourth
order.

The coe�cients of these expansions are related to the higher order
moments, or cumulants respectively. The �rst cumulant c1 is the mean of
a distribution. The second cumulant c2 represents the variance. For sym-
metric distributions the third order cumulant c3 vanishes - it is therefore
sometimes also referred to as skew. The fourth order cumulant is com-
monly referred to as kurtosis, k = c4=c

2
2. Kurtosis represents how peeked

the mode, or how long the tails of a distribution are. From (25) we see
that all cumulants higher than the second must vanish for a Gaussian
distribution.

By using this approximation in terms of moments and cumulants one
obtains expressions for single variable densities and the entropies as ana-
lytic functions of the higher order moments, i.e. p(y) = p(yjc1; c2; :::) or
H[p(y)] = H(c1; c2; :::). The cumulants can be estimated using the the
samples y1; :::; yN , which in turn are a function of the mixture parameters,
i.e. ci � ĉi(y1; :::; yN) = ĉi(W ). Combining all this one obtains expres-
sions of the entropy in terms of the mixture parameter up to a desired
order n,

H[p(y)] =
1

2
ln(2�e) +

1

2
ln�2 � 1

12

c23
�6

� 1

48

c24
�8
� 7

48

c43
�12

+
1

8

c23
�6

c4
�4

:::

� H(ĉ1(W ); ĉ2(W ); :::; ĉn(W )) (26)

This can be used in the cost function (15) of the MMI approach, and
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the solution is found with a gradient descent techniques to optimize the
parameters W [4, 17, 1].

One can show that cutting o� after the second order term in (26)
gives an upper bound on the entropy, H[p(y)] � 1

2
ln�2 + const:, which

can be used as an alternative and simpli�ed cost function [18, 7]. In
particular for a Gaussian input distribution and a linear transformation
the upper bound becomes an strict equality. The MMI criterion, i.e.
minimizing (15), reduces then to �nding the minimum of the sum of the
log of the output variances �2i � �̂2i (W ) under the constraint that entropy
is conserved,

WMMI = argmin
W;jW j=1

dyX
i=1

ln �̂2i (W ) (27)

Again one can show that for rotations, W�1 = W>, this reduces to
PCA [7] 5

2.4 Cross-moments and Cross-cumulants

An alternative approach of using higher order statistics is to formulate
the conditions that cross-cumulants satisfy for statistical independent co-
ordinates. The cross-cumulants are polynomial expressions of the cross-
moments. Cross-moments of order q are de�ned by the expected values of
all the possible combinations of powers (q1; :::; qdy ) = q with q =

Pdy
i=1 qi.

M [y;q] =

Z
dyp(y)yq11 yq22 :::y

qdy
dy

(28)

Cumulants are essentially de�ned as the coe�cients of the Taylor ex-
pansion of the logarithm of the Fourier transform of the density function
about the zero frequency,

C[y;q] =
@q

iq@q1�1:::@
qdy �dy

ln

Z
dyei�

>yp(y)

����
�=0

(29)

Cumulants C[y;q] can be expressed entirely as speci�c polynomial
combinations of the moments of the same or smaller order that use the
same variables as selected by the particular q [6]. Cross-cumulants are
important here since they can be shown to satisfy certain equations in the

5To show this one can use the fact that for a Gaussian input distribution p(x) with covari-
ance Rx and a linear, square, and invertible transformation W the variances of the output,
y =Wx, can be written as [�21 ; :::; �

2
dy
] = diag(WRxW>). To enforce the constraint jW j = 1

one can rescale the arbitrary W to ~W = W=jW j1=dy . With that, the variances become
diag(WRxW>=jW j2=dy ). Inserting this into the criteria (27) and setting the derivative with
respect to W to zero leads to the now familiar diagonalization equations. In the case of
rotations this corresponds the eigenvalue problem of PCA.
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case of statistical independent variables [7]. Indeed, most cross-cumulants
have to be zero. For example the elements of a covariance matrix repre-
sent the second order cross-cumulants. The o�-diagonal terms vanish for
statistical independent coordinates, expressing the fact that decorrelation
is a necessary condition for statistical independence. While the third order
cross-cumulants have to vanish as well, the fourth order cross-cumulants
do not have to be all zero to guarantee independence [7]. One can combine
those conditions in a single cost function. Again by replacing the cumu-
lants with their sample estimates one obtains a cost that is a function of
the parameters of the map. Minimizing that cost function with a gradient
descent leads to independent components [7, 25].

Note the di�erence of the methods outlined above. While the second
formulates conditions for the cross-cumulants the �rst approach tries to
formulate a cost function in terms of single variable cumulants, i.e. diag-
onal terms of (29), and (28) with q1 = q, or q2 = q, ..., or qN = q.

The criteria based on diagonal terms of cumulants have been used in
instantaneous linear ICA [1] as well as in non-linear ICA [17, 18]. Cross-
cumulants have been used in unsupervised learning of non-linear temporal
recursion relations [8] (see section 3.3), as well as in convolutive ICA
[24, 25] where cross-cumulants of coordinates at di�erent time delays were
considered.

While explicit consideration of higher order statistics tends to gener-
ate complicated and computationally expensive objective functions, they
may depend less on the accuracy of the assumptions on the source densi-
ties. The algorithms that implicitly include higher orders tend to simpler
algorithms that are easier to implement e�ciently.

3 Source separation on time series

This far we have ignored the fact that the signals are often observed in a
particular ordering x(t);x(t+1);x(t+2); :::, which may containing useful
information. The most immediate way of measuring temporal statistic
is the auto-correlation and cross-correlations, which will be used in the
next two sections. In fact, section 3.2 shows that for non-white or non-
stationary signals one can recover the unknown mixture coe�cients A
using only second order statistic, and without any additional assumptions
or knowledge on the source distributions p(y). But �rst, we will see how
to include temporal structure in the ML estimation approach outlined in
section 1.3.

3.1 ICA and AR model of the signal

In section 1.3 we assumed that multiple samples x(t);x(t+1);x(t+2); :::
are identically and independently distributed according to some p(x). For
time series this is often not the case. Instead, subsequent samples are
correlated. In terms of probabilities this can be expressed by conditional
densities p(x(t)jx(t�1); x(t�2); :::; x(t�P )), where the current sample x(t)
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depends on the its past values. The joint distribution of the observations
should be factored, rather than as a simple product, as in (5), into a
product of conditional densities

p(x(t);x(t� 1);x(t� 2); :::)

= p(x(t)jx(t� 1);x(t� 2); :::) p(x(t� 1);x(t� 2); :::) (30)

= ::: =
1Y
�=0

p(x(t� � )jx(t� � � 1);x(t� � � 2); :::) (31)

This allows us to model temporal relations of the signal. In section
1.3 we expressed the likelihood of observations p(xjW ) in terms of the
single variable densities psi(si). Now the conditional density p(x(t)jx(t�
1);x(t�2); :::;W ) will be expressed in terms of p(si(t)jsi(t�1); si(t�2); :::)
in an analogous way.

p(x(t);x(t� 1);x(t� 2); :::) (32)

=

1Y
�=0

p(x(t� � )jx(t� � � 1);x(t� � � 2); :::) (33)

=

1Y
�=0

jW j
dsY
i=1

p(si(t� �)jsi(t� � � 1); si(t� � � 2); :::)

�����
s=Wx

(34)

This concept has been called contextual ICA [20]. A standard signal
processing model for temporal correlations of the signals is the linear auto-
regressive (AR) model. The AR model makes a linear prediction �s(t) of
s(t) from the past P samples,

e(t) = s(t)� �s(t) = s(t)�
PX
�=1

a(�)s(t� �) (35)

where e(t) is considered to be the error of the prediction, and a(�) the
linear prediction coe�cients (LPC). For a Gaussian distributed error the
ML estimate of the LPC are given by the parameters that minimize the
expected error



e2(t)

�
. Recall that for those the error signals are decor-

related in time [10]. For arbitrarily distributed error the corresponding
density function is then,

p(s(t)js(t� 1):::s(t� P );a) = p(a>s(t)) = p(e(t)) (36)

with a = [1;�a(1); ::;�a(P )]>, and s(t) = [s(t); :::; s(t � P )]>. One
can insert this density for every source into the likelihood function (34),
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Figure 4: Left: samples of two independent, uniformly distributed variables
after low-pass �lter and linear mix. Center: density estimated for residuals ei.
The resulting density is a product of single coordinate Gaussian mixture models.
Right: recovered independent model sources.

where one may choose for every model source si(t) independent AR pa-
rameters ai. The simplest approach for optimizing these parameters is
again a stochastic gradient of the likelihood function L(W; a1; :::; ads) =
ln p(x(t);x(t� 1);x(t� 2); :::;W;a1; :::; ads). The resulting update equa-
tions are,

�ai(�) = ��ui(t) si(t� � ), with ui(t) =
@ ln p(ei(t))

@ei(t)
(37)

The example in �gure 4 serves as a demonstration of the method. Two
independently uniformly distributed random variables where low-pass �l-
tered and then linearly mixed to produce the distribution shown to the
left. Additionally to the LPC coe�cients each source coordinate was mod-
eled by a Gaussian mixture density p(e) = p(ej�) with parameters � to
allow for arbitrary source distributions. Overall the parameters estimated
where therefore the linear mixture parametersW , the LPC coe�cients for
each source ai and the parameters �i of the Gaussian mixture model for
each source. After estimating all this parameters with the outlined ML
approach the original uniformly distributed coordinates and the proper
statistical independent orientations have been recovered as seen in the
center and to the right.

Figure 5 shows the separation results that were obtained for 10 dif-
ferent music sources, which were digitally mixed giving an instantaneous
linear mix. A stationary AR model of size P = 20 was used. The density
function for each channel was chosen as a zero mean Gaussian with unit
variance. Gradient ascent rules (8) and (37) where used. The remaining
cross-talk was hardly audible and corresponds to a signal-to-noise ratio
(SNR) between 10 dB and 20 dB for the 10 di�erent channels.
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linear mix (channel 1 and 2) separation (channel 5 and 6)

Figure 5: left: Two of the 10 channels of 10 linearly mixed music CD sources.
right: Two channels of the output show good separation using contextual ICA.
For more details see [21]

3.2 Separation based on time structure of cross-

correlation

In this section we will see that using the temporal properties of the signal
it is su�cient to consider second order statistic in oder to identify an
unknown linear mixing. This is strictly speaking not ICA, which is de�ned
as a factorization in all orders, but it can still be understood as source
separation.

Again, for an instantaneous mixture the forward model is given by,

x(t) = As(t) (38)

We can formulate the cross-correlations Rx(t; �) of the measured sig-
nals at time t and time delay �

Rx(t; �) �
D
x(t)x>(t+ �)

E
=A

D
s(t)s>(t+ � )

E
A> � A�s(t; � )A

>
(39)

Since we assume decorrelated sources at all times we postulate diagonal
cross-correlations �s(t; �). The notation is a bit vague here and needs
some clari�cation. Rx(t; 0) represents the covariance estimated at time
t, presumably estimated by averaging over a range around t. If we write
Rx(�) we are referring to the cross-correlation, or covariance with time
delay � estimated over all data, i.e. integrating over all t.

We now can choose to concentrate either on non-stationarity or non-
whiteness of the signals.
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In case of non-stationary signals we will exploit the fact that the co-
variance matrix estimated at di�erent times t will give e�ectively new
conditions for every time,

Rx(t; 0) =
D
x(t)x>(t)

E
= A�s(t; 0)A

> (40)

In the case of non-white signals we can exploit the fact that the cross-
correlation (estimated over the entire signal) gives di�erent conditions for
di�erent time delays �

Rx(�) =
D
x(t)x>(t+ �)

E
= A�s(� )A

> (41)

The diagonal terms in �s(� ) represent now the auto-correlations of
the model sources. But e�ectively, in both cases, by considering multi-
ple times, or multiple delays respectively, we obtain a set of equations
that have to be satis�ed simultaneously. We have therefore a problem of
simultaneous diagonalization.

For non-stationary signals a set of K equations (39) for di�erent times
t1; :::tK gives then a total of Kdx(dx+1)=2+ds constraint on dsdx+dsK
unknown parameters A;�s(t1); :::;�s(tK).

6. Assuming all conditions are
linearly independent7 we will have su�cient conditions if,

Kdx(dx + 1)=2 + ds � dsdx + dsK (42)

In the square case, ds = dx, in principle K = 2 is su�cient to specify
the solution up to arbitrary permutations. In that case the problem can
be solved as a non-symmetric eigenvalue problem as outlined in [14].

Rx(t1) = A�(t1)A
> (43)

Rx(t2)
�1 = A�T�(t2)

�1A�1 (44)

Rx(t1)Rx(t2)
�1A = A�(t1)�(t2)

�1 (45)

The last equation represents a non-symmetric eigenvalue problem. In
general its solutions, A, are not orthogonal as expected. Though ex-
tremely fast the di�culty with such algebraic solutions, however, is that
one does not have perfect estimates of Rx(t), and the results depends
strongly on the estimation noise. At best one can assume no-stationary
signals and measure the sample estimates R̂s(t) within the stationarity
time. If we interpret the inaccuracy of that estimation as measurement
error

E(k) = R̂x(k)�A�s(k)A
> (46)

6We will write in the remainder in brief �s(k) = �s(tk) and �s = �s(t1); :::;�s(tK )
whenever possible. The same applies to and Rx(t)

7Conditions on Rx and �s for linear independence are outlined in [14].
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it is reasonable to estimate the unknown parameters by minimizing the
total measurement error for a su�ciently large K,

Â; �̂s = argmin
A;�s;Aii=1

KX
k=1

kE(k)k2 (47)

The matrix norm here is the sum of the absolute values of every coef-
�cient. Note that kEk2 = Tr(EEH). This represents a least squares (LS)
estimation. To �nd the extrema of the LS cost E =

PK
k=1 kE(k)k in (47)

let us compute the gradients with respects to its parameters8

@E

@A
= �4

KX
k=1

E(k)A�̂s(k) (48)

@E

@�̂s(k)
= �2 diag

�
AE(k)A>

�
(49)

We will have to use an iterative algorithm to �nd the extrema with
respect to A and �s(k) using the gradients in (48) and (49).

In the case of a square and invertible mixing Â the signal estimates are
trivially computed to be ŝ = Â�1x. In the non-square case for ds < dx
we can compute the LS estimate,

ŝLS(t) = argmin
s(t)

kx(t)� Âs(t)k = (Â>Â)
�1
Â>x(t) (50)

In this section we described how one can treat the case of instanta-
neous mixtures by decorrelating the covariance matrices simultaneously
at several times. This approach requires non-stationary sources. The
problem can also be treated by decorrelating the cross-correlation at dif-
ferent time delays. This requires the signals to be non-white rather than
non-stationary. This is the approach traditionally take in the literature
[2, 14, 23, 24].

3.3 Non-linear time dependencies

We discussed in the previous section only linear relations in time. In order
to model non-linear relations we will get back to the general formulation
of statistical independence with minimal mutual information of section
1.5. This section reproduces the work in [8]. Consider the problem of
�nding non-linear relations in a time series x(1); :::; x(t); ::: . Very blandly
speaking we know that non-linear recursion relations can lead to chaotic
time series. We will use minimum mutual information to discover the

8The diagonalization operator here zeros the o�-diagonal elements, i.e. diag(M)ij =�
Mij ; i = j
0; i 6= j
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Figure 6: Every output of this network is connected to the past inputs with ar-
bitrary non-linear relations parametrized by w. Note that the direct connection
weights are unity.

recursive relation leading to a chaotic time series. Consider the network
structure of �gure 6. Note that the output units are only connected to
past inputs, and their connection to the present input is unit weight,

y(t) = x(t)� f(x(t� 1); x(t� 2); :::;w) (51)

With this we see that Jacobian has triangular structure, and the de-
terminant is,

����@y@x
���� =

����������

1 0 ::: 0
::: 1 ::: 0
::: ::: :::
::: @f(x;w)=@x 1 0
::: ::: 1

����������
= 1 (52)

The relation f(x;w) can be any parametric non-linear transformation
that best explains the relations of the time series. Due to this structure
the map conserves the entropy and we obtain statistical independence
if we minimize the single coordinate entropies. Note that this structure
could be understood as a non-linear generalization of the traditional lin-
ear AR model. Equation (51) has the same structure as the linear AR
equation (35), now however with non-linear relations to the past. The
outputs y correspond to the error signal. Recall that the optimal linear
AR parameter also lead decorrelated error signals, which represents sta-
tistically independent up to second order. We shall not go to far in this
analogy and turn now to a demonstrative example. Consider for example
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Figure 7: (a) State space structure of the attractor of the Henon map shown
here by plotting x(t+2) and x(t+3). (b) outputs y(t+1); y(t+2); :::; y(t+6)
as a function of time after minimizing their mutual information, which reduces
the correlation by extracting the functional relationship of the inputs x(t +
1); :::; x(t+6) (c) same as (b) but using standard PCA. (d) trained polynomial
model f3 versus x(t+ 2). Figures taken from [7]
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the Henon-map [11], which can be generated with the following iteration9,

x1(t) = 1 � 1:4x21(t� 1) + 0:3x1(t� 2) (53)

To model this relation the output y(t + i) = x(t + i) � fi(x(t + i �
1); :::; x(t+1); i = 1; :::; 6, that is the prediction error, should be a polyno-
mial combination of the past. By construction, however, the �rst output
y(t + 1) is just x(t + 1). The polynomial of the following outputs can-
cel the e�ect of the iteration such that they are independent from the
former. Minimizing the mutual information of the outputs will generate
statistically independent output only if the model parameter match the
parameters that generated the time series. In this example higher order
statistics using cross-cumulants have been used to minimize mutual infor-
mation. Figure 7 shows that the parameter of the polynomial f3 match
after training the parameters of (53). It also shows that a history of at
least two taps is required to cancel the prediction errors in agreement with
the generating dynamic. The polynomials f4; f5; f6 have the same param-
eters than f3 while zeroing all other parameters with longer history. They
reveal thus the rank, or embedding dimension of the non-linear dynamic.

4 Convolutive BSS

In a real environment, where the signals travels slow compared to its cor-
relation time, the instantaneous mix is not a good description of the linear
superposition. The signal arrive at the di�erent sensors with di�erent time
delays. In fact, the signal may be re
ect at boundaries and arrive with
multiple delays to a particular sensor. This scenario is referred to as a
multi-path environment and can be described as a �nite impulse response
(FIR) convolutive mixture,

x(t) =
PX
�=0

A(� )s(t� � ) (54)

How can one identify the dxdsP coe�cients of the channels A and how
can one �nd an estimate ŝ(t) for the unknown sources? This situation is
considerably more complicated than in the previous sections as one has
now a matrix of �lters rather than a matrix of scalars mixing. And even
once the channel has been identi�ed, inverting it is a more di�cult task

9Note that this is not the original de�nition of the Henon-map, which is a nonlinear iteration
of the sort, z(t+1)=f(z(t)), with a two dimensional vector z 2 <2. With the Takens's theorem,
however, it is possible to convert any non-linear multi-dimensional dynamic z(t) ! z(t + 1)
into a iteration of a one-dimensional dynamic with a longer history x(t� P ); :::; x(t)! x(t+
1). This, so called, embedding has the same dynamic properties, such as largest Lyapunov
exponent and correlation dimension, than the original iteration [22]. The number of taps P
is called the embedding dimension, and represents a important parameter for the modeling of
chaotic time series.
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Figure 8: Acoustic signals recorded simultaneously in a reverberant environment
can be described as sums of di�erently convolved sources.

as the inverse should in principle be a recursive, and therefore potentially
an unstable in�nite impulse response (IIR) �lter.

Alternatively one may formulate an FIR inverse model W ,

y(t) =

QX
�=0

W (�)x(t� � ) (55)

and try to estimateW such that the model sources y(t) = [y1(t); :::; ydy (t)]
>

are statistically independent.
In analogy to section 3.2 we will exploit non-stationarity of the signals,

which allows us to restrict to second order statistic. Higher order method
for convolutive separation will not be discussed as they are substantially
more complex and not really required for the case of non-stationary sig-
nals. The literature on convolutive BSS based on higher order methods is
extensive. References can be found in [19].

4.1 Cross-correlations, circular and linear convo-

lution

First consider the cross-correlations Rx(t; t + �) =


x(t)x(t+ � )>

�
. For

stationary signals the absolute time does not matter and the correlations
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depend on the relative time, i.e. Rx(t; t+ �) = Rx(�). Denote with Rx(z)
the z-transform of Rx(� ). We can then write

Rx(z) = A(z)�s(z)A(z)
H (56)

where A(z) represents the matrix of z-transforms of the FIR �lters
A(� ), and �s(z) are the z-transform of the auto-correlation10 of the sources,
which again is diagonal due to the independence assumptions.

For practical purposes we have to restrict ourself to a limited number
of sampling points of z. Naturally we will take T equidistant samples on
the unit circle such that we can use the discrete Fourier transform (DFT).
For periodic signals the DFT allows us to express circular convolutions as
products such as in (56). However, in (54) and (55) we assumed linear
convolutions. A linear convolution can be approximated by a circular
convolution if P � T and we can write approximately

x(!; t) � A(!)s(!; t); for P � T (57)

where x(!; t) represents the DFT of the frame of size T starting at t,
[x(t); :::;x(t + T )], and is given by x(!; t) =

PT�1
�=0 e

�i2�!�x(t + � ) and
corresponding expressions for s(!; t) and A(!).

For non-stationary signals the cross-correlation will be time dependent.
Estimating the cross-correlation at the desired resolution of 1=T is di�cult
if the stationarity time of the signal is in the order of magnitude of T or
smaller. We are content however with any cross-correlation average which
diagonalizes for the source signals. One such sample average is,

10Recall the de�nition of the z transform

a(z) =
1X

t=�1
a(t)z�t

Read a(z) to be the z transform of a(t). This leads directly to the convolution theorem for
the z-transform

y(t) =
1X

�=�1
a(�)x(t � �) () y(z) = a(z)x(z)

since

1X
t=�1

z�ty(t) =
1X

t=�1
z�t

1X
�=�1

a(�)x(t � �) =
1X

�=�1
z��a(�)

1X
t0=�1

z�t
0

x(t0)

. Going back to the multi-path convolution (54) and inserting the de�nition for the cross-
correlation matrix we �nd,

Rx(�) =
1X

� 0=�1

1X
� 00=�1

A(� 0)�s(� 0 � � 00 � �)AH(� 00)

This gives with the convolution theorem equation (56)
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�Rx(!; t) =
1

N

N�1X
n=0

x(!; t+ nT )xH(!; t+ nT ) (58)

We can then write for such averages

�Rx(!; t) = A(!)�s(!; t)A
H(!) (59)

If N is su�ciently large we can assume that �s(!; t) can be modeled as
diagonal again due to the independence assumption. For equations (59)
to be linearly independent for di�erent times t it will be necessary that
�s(!; t) changes over time for a given frequency, i.e. the signal are non-
stationary.

4.2 Backward model

Given a forward model A it is not guaranteed that we can �nd a stable
inverse. In the two dimensional square case the inverse channel is easily
determined from the forward model [24, 16]. It is however not apparent
how to compute a stable inversion for arbitrary dimensions. In this present
work we prefer to estimate directly a stable multi-path backward FIR
model such as (55). In analogy to the discussion above and to section 4.2
we wish to �nd model sources with cross-power-spectra satisfying11 ,

�s(!; t) =W (!) �Rx(!; t)W
H(!) (60)

In order to obtain independent conditions for every time we choose the
times such that we have non-overlapping averaging times for �Rx(!; tk), i.e.
tk = kTN . But if the signals vary su�ciently fast overlapping averaging
times could have been chosen. A multi-path channel W that satis�es
these equations for K times simultaneously can be found, again with an
LS estimation12

E(!; k) =W (!) �Rx(!; k)W
H(!)� �s(!; k)

Ŵ ; �̂s; �̂n = argmin
W;�s

W (�) = 0; � > Q;
Wii(!) = 1

>X
!=1

KX
k=1

kE(!; k)k2
(61)

11W (!) represents the DFT with frame size T of the time domain W (�). In what follows
time and frequency domain are identi�ed by their argument � or !.

12In short we write again �s(!; k) = �s(!; tk) and �s = �s(!; t1); :::;�s(!; tK) whenever
possible. The same applies to Rx(!; t)
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Note the additional constraint on the �lter size in the time domain. Up
to that constraint it would seem the various frequencies ! = 1; :::; T rep-
resent independent problems. The solutions W (!) however are restricted
to those �lters that have no time response beyond � > Q � T . E�ec-
tively we are parameterizing Tdsdx �lter coe�cients in W (!) with Qdsdx
parameters W (�). The LS solutions can again be found with a gradient
descent algorithm. We will �rst compute the gradients with respect to
the complex valued �lter coe�cients W (!) and discuss their projections
into the subspace of permissible solutions in the following section.

For any real valued function f(z) of a complex valued variable z the
gradients with respect to the real and imaginary part are obtained by
taking derivatives formally with respect to the conjugate quantities z�

ignoring the non-conjugate occurrences of z� [12].

@f(z)

@<(z) + i
@f(z)

@=(z) = 2
@f(z)

@z�
(62)

Therefore the gradients of the LS cost in (61) are,

@E

@W �(!)
=2

KX
k=1

E(!; k)W (!) �Rx(!; k) (63)

@E

@�̂�s(!; k)
=� diag (E(!; k)) (64)

With (64)=0 one can solve explicitly for parameters �s(!; k), while
parameters W (!) may be computed with a gradient descent rule.

4.3 Permutations and constraints

The above unconstrained gradients can not be used as such but have to
be constrained to remain in the subspace of permissible solutions with
W (�) = 0 for � > Q � T . This is important since it is a necessary
condition for equations (60) to hold to a good approximation.

Additionally, not all possible permutations of frequencies will lead to
FIR �lters which satisfy that constrain. Note that any permutation of
the coordinates for every frequency will lead to exactly the same error
E(!; k). The total cost will therefore not change if we choose a di�er-
ent permutation of the solutions for every frequency !. Obviously those
solutions will not all satisfy the condition on the length of the �lter. Ef-
fectively, requiring zero coe�cients for elements with � > Q will restrict
the solutions to be smooth in the frequency domain, e.g., if Q=T = 8 the
resulting DFT corresponds to a convolved version of the coe�cients with
a sinc function 8 times wider than the sampling rate.

It is therefore crucial to enforce that constraint by starting the gradient
algorithm with an initial point that satis�es the constraints, and then fol-
lowing the constrained gradient. The normalization condition that avoid
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trivial solutions of the LS optimization have to be enforced simultaneously.
The constrained gradients are obtained by applying the corresponding
projection operators. The projection operator that zeros the appropriate
delays for every channel Wij = [Wij(0); :::;Wij(!); :::; Wij(T )]

> is

P = FZF�1 (65)

where the DFT is given by Fij = 1=
p
Te�i2�ij , and Z is diagonal with

Zii = 1 for i < Q and Zii = 0 for i � Q. The projection operator that
enforces unit gains on diagonal �lters Wii(!) = 1 is applied simply by
setting the diagonal terms of the gradients to zero.

4.4 Performance metric

The main di�culty in assessing the quality of a separation from real
recordings is that the true sources are generally not available.

We de�ne as the Signal to Interference Ratio (SIR) of a signal s(t) in
a multi-path channel H(!) the total signal powers of the direct channel
versus the signal power stemming from cross channels.

SIR[H; s] =

P
!

P
i jHii(!)j2


jsi(!)j2�P
!

P
i6=j
P

j jHij(!)j2 hjsj(!)j2i (66)

In the case of known channels and source signals we can compute the
expressions directly by using a sample average over the available signal and
multiplying the powers with the given direct and cross channel responses.
In the case of unknown channel response and underlying signals we can
estimate the direct powers (numerator) and cross-powers (denominator)
by using alternating signals. We estimate the contributions of source j
while source j is 'on' and all other sources are 'o�'. During periods of
silence, i.e. all sources are 'o�' we can estimate background noise powers
in all channels to subtract from the signal powers.

On real recordings we can measure the performance by hand-segmenting
the signal of alternating speakers into speech and non-speech to obtain
the 'on' and 'o�' labels. With this algorithm one obtains a separation of
14 dB from a signal that originally had 0 dB SIR.

We have used arti�cial random �lters in order to determine the de-
pendency of the algorithm on the various parameters such as number of
channels, number of sources, �lter size, and required signal length. All ex-
periments reported in �gure 9 used mixtures with an SIR of roughly 0 dB
as input. The direct forward channels where constant gain (Aii(!) = 1)
and the cross-channels where set in the time domain to zero mean, nor-
mal, random numbers. The deviation was adjusted to produce in average
a SIR of 0dB. We used K = 5 in all cases.
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Figure 9: top left: Separation performance as a function of separation �lter
size Q for forward �lter sizes P = 16; 32; 64 (dash-doted, dashed, and solid
lines respectively). Mean values over 15 runs with di�erent random forward
�lters are shown. The deviation from that mean was in average 3.4 dB, 4.8
dB, and 1.3 dB respectively. top right: Separation performance as a function
of signal length in seconds for random forward �lters of size P = 64. Mean and
standard deviation over 15 runs with di�erent random forward �lters are shown.
bottom: Separation performance as a function of number of channels (ds = dx)
for random forward �lters of size P = 64. Mean and standard deviation over 10
runs with di�erent random forward �lters are shown.
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5 Summary

In a particular application the question arises which, if any, of these source
separation techniques should be used. First, it is important to con�rm
that the model of a linear mixture of independent sources really applies,
and if the mixture is instantaneous or convolutive. The cases of non-linear
mixtures are not well understood yet, and are an area of active research.

If the samples are drawn independently one will have to resort to the
criteria of statistical independence. Any particular knowledge about the
density function of the underlying sources will be useful in restricting
the class of possible non-linearities or equivalently the family of model
distributions. If nothing, or very little is know about the underlying dis-
tributions higher moments may have to be considered.

If however the samples are given in a ordered sequence, and as a result
are not drawn i.i.d., one can use the more robust second order techniques
based on non-stationarity, or temporal correlation, the latter correspond-
ing to spatial correlation in images.
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