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Spatiotemporal Linear
Decoding of Brain State

[Application to performance augmentation 
in high-throughput tasks]

T
he conventional goal for a brain-computer interface has been to restore, for paralyzed
individuals, a seamless interaction with the world. The shared vision in this research
area is that one day patients will control a prosthetic device with signals originating
directly from their brain. This review provides a new perspective on the brain-com-
puter interface (BCI), by asking instead “How can BCI be used to assist neurologically

healthy individuals in specifically demanding tasks?”
The limited signal-to-noise ratio (SNR) of noninvasive brain signals suggests that one must

tailor the application of BCI to tasks where a small increment in information can make a large
difference. High throughput tasks may provide such a scenario, as will be exemplified in this
review for one such task: rapid visual target detection. BCI can assist in this task by prioritizing
perceived target images.

Due to the speeded nature of this and related tasks, it is essential to use fast and effective sig-
nal processing. Effective performance is achieved by extracting spatiotemporal discriminant



brain activity in high dimensions (typically ≥64 electrodes dis-
tributed across the skull surface, with sampling rates of 1,000
Hz). Fast processing speed is achieved by constraining the
methods to linear analysis of these data. In fact, considering the
low SNR of scalp electroencephalography (EEG) even linear
features require careful regularization. This review summarizes
linear spatiotemporal signal analysis methods that derive their
power from careful consideration of spatial and temporal fea-
tures of skull surface potentials.

INTRODUCTION
From an engineering point of view, the task of a BCI is to decode
brain activity as reliably and as fast as possible. Specifically, the
interface must identify neurophysiological activity that is associat-
ed with a subject’s choices or decisions. This is essentially a signal
transmission problem in which performance can be evaluated in
terms of bit rate, that is, the number of binary decisions success-
fully communicated per unit time. It is no surprise, therefore, that
a large fraction of BCI algorithms use binary classification between
two alternative brain “states” as their starting point [10], [20].

Neuronal activity of the brain is reflected in changes of blood
oxygenation, local field potentials, or scalp surface potentials.
Blood oxygenation can be measured with functional MRI at very
high spatial resolutions (≈mm). However, the sluggish response
of hemodynamic regulation (>5 s) limits the effective bit rate of
this modality [8], despite potentially high classification specifici-
ty. In contrast, electrical signals generated by neuronal dis-
charge have very high temporal resolution (10 ms or less).
Currently only surface electrodes (either placed on top of the
scull or implanted chronically on the cortical surface) are viable
on a long-term basis. For healthy subjects only scalp electrodes
(scalp EEG) can be justified.

This review will provide an overview of linear classification
algorithms for EEG and demonstrate applications of BCI to per-
formance augmentation. 

AN OVERVIEW OF LINEAR ANALYSIS 
ALGORITHMS FOR EEG

TRADITIONAL EEG ANALYSIS
In EEG the SNR of individual signal channels is low, often at
−20 dB or less. To overcome this limitation, all analysis meth-
ods perform some form of averaging, either across repeated tri-
als, across time, or across electrodes. Traditional EEG analysis
averages the signals of individual electrodes across many repeat-
ed trials. A conventional method is to directly average the meas-
ured potentials following stimulus presentation, thereby
canceling uncorrelated noise that is not reproducible from one
trial to the next. This averaged activity, called evoked response
potentials (ERPs), captures activity that is time locked to the
stimulus presentation while canceling evoked oscillatory activity
that is not in phase with the stimulus. Alternatively, many stud-
ies compute the power of oscillatory activity in specific frequen-
cy bands by filtering and squaring the signal prior to averaging.
In either case, the analysis is performed on individual channels
and different experimental conditions are compared separately
for each channel using conventional statistical tests such as
Student’s t-test or analysis of variance (ANOVA). These
approaches are motivated by traditional concepts such as aver-
aging, filtering, and univariate hypothesis testing. They do not,
however, exploit the full spatiotemporal structure of the data.

Only in recent years have massively multivariate methods
gained popularity in an effort to capture the full spatiotemporal
dynamic of the EEG. BCI systems in particular have driven the
development with the goal of extracting information from the
EEG signal without having to average over trials.

LINEAR ERP ANALYSIS IN THE CONTEXT OF BCI
This review will focus on our analysis methods for stimulus
evoked responses, i.e., EEG activity that is elicited by an external
event such as the presentation of an image on a computer moni-

tor. The cascade of neuronal
processes that such a stimulus
elicits might last just 1 s, yet,
when recording this activity with
a modern EEG system at 1 kHz
with 100 electrodes, this provides
a data matrix of 105 elements for
each stimulus presentation.

Stimuli are often presented
repeatedly in a sequence of trials
leading to a large volume of data
encompassing three dimensions:
trials, channels, and time (see
Figure 1). The goal of a BCI sys-
tem is to identify the evoked
activity for each event without
averaging over trials. The n th
trial is characterized by the data
matrix Xn of dimensions chan-
nels × time, or D × T. This

[FIG1] Representation of data space in which EEG data is collected. Linear decoding algorithms
can be applied across different and multiple dimensions of this data-space.
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evoked response is to be classified as having been generated by
one of two events. These may be associated with events such as
target present versus no target present, perceived reaction error
versus correct response, or imagined left movement versus
imagined right movement. The challenge is to find a function
that associates with the data matrix, Xn ∈ "D×T, a scalar (possi-
bly binary) value yn that can be used to determine the class of
the event

yn = f(Xn) . (1)

This mapping represents a tremendous data reduction, e.g.
from 105 dimensions to one. Without some form of constraint,
the set of possible functions is intractable. The first constraint
and simplification we propose is to consider only linear func-
tions f . In its simplest form there are still D × N (105) free
parameters to define this linear map. It may therefore be neces-
sary to further constrain the number of degrees of freedom by
exploiting available prior knowledge. For instance, we know that
in the object recognition paradigm proposed later, images con-
taining targets are rare. Such rare events are known to elicit a
positive potential (relative to baseline activity) 300 ms after
stimulus presentation. This activity, called P300, is broadly dis-
tributed over central and parietal electrodes. Given this informa-
tion a reasonable linear mapping could simply be a weighted
sum over appropriately chosen samples and electrodes:

yn = f(Xn) =
∑

i j
Wji Xijn = Tr{WTXn} , (2)

where Wij are weights for the appropriate set of electrodes i and
time indices j. Instead of fixing weights a priori one can also
choose optimal weights based on example data. Optimal weights
are those that best predict event class from value y for new
(unseen) data X based on a set of training examples
{Xn, yn; n = 1 . . . N }. In the applications presented here a real-
istic number of such training examples may include as little as
N = 50 trials. This small number of exemplars (as compared to
D × T ≈ 105) certainly requires constraining the degrees of
freedom of parameters W to avoid poor performance due to
over-fitting.

SPATIAL AND TEMPORAL PROJECTIONS
The methods we have developed for this problem can be best
summarized by considering the following factorization:

W = UVT =
K∑

k=1

ukvT
k . (3)

We introduce this factorization because it allows us to
reduce the degrees of freedom in W in a systematic fashion as
the rank K is chosen to be less than min(D, T). In addition, this
factorization can be interpreted as decomposing W into separate
spatial and temporal projection vectors:

yn = Tr{UTXnV} =
K∑

k=1

uT
kXnvk . (4)

The columns uk of matrix U represent K linear projection in
space and, similarly, each of the K columns vk in matrix V repre-
sent linear projections in time. 

With this interpretation it is now possible to express prior
information on the spatial or temporal properties of the activity.
For instance, one may use matrix V to select an appropriate time
interval for the analysis by setting all coefficients outside this
interval to zero. Matrix V can also be used to implement a filter-
ing operation by specifying a corresponding Toeplitz structure;
it could also be used to decompose the signal into its (time-) fre-
quency components by using a Fourier or wavelet transforma-
tion matrix. In addition, the columns of matrix U can be used to
select electrodes, or, if an anatomical model of the electrical
conductivity of the head was available, one can specify in each
column uk a projection that recovers the k th current sources
from the observed skull surface potentials (source space analy-
sis). In this manner prior knowledge of the anatomical origins of
neuronal currents can be naturally included into the analysis.

After these choices have been made based on prior informa-
tion, the goal for machine learning is then to determine the
remaining free parameters using a set of training examples. We
have developed five methods of increasing complexity that fall
within this framework.

1) Set K = 1 and chose the temporal component v to select a
time window of interest (i.e., set vj = 1 if j is inside the win-
dow of interest, and vj = 0 otherwise). Learn the spatial
weights of vector u from examples [5].
2) Select some K > 1 and chose the components vectors vk
to select multiple time windows of interest (as in 1). Learn
each spatial weight vector uk from examples separately and
then combine these with weights vk int o a single matrix W in
a separate learning step (see Figure 4) [5].
3)  Set K = D while constraining U to be a diagonal matrix
and select, separately for each channel, the time window vk
(i = k) which is most discriminative. Then train the diagonal
terms of U resulting in a latency dependent spatial filter W
[11]. Alternatively, in the first step, use feature selection to
find the right set of time windows vk simultaneously for all
channels [12].
4)  Set K = 1 and learn the spatial and temporal components
u and v simultaneously. Constrain the solution to be smooth
in both space and time [3].
5)  Select some K > 1 and learn all columns of the spatial
and temporal projection matrix U and V simultaneously.
Constrain the solution to be smooth and resolve the inherent
ambiguity of factorization (3) assuming that components k
are independent across trials [4].
A number of (bi-)linear methods developed by other laboratories

also fall within this general framework, e.g., [9], [19], [21],  and [22].
The basic principles underling our methods will now be described,
leaving the details of the specific algorithms to the original papers.
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LINEAR DISCRIMINATION ALGORITHMS
The learning problem as formulated above amounts to a con-
ventional two-class linear discrimination problem with addition-
al constraints on the structure of the coefficients W. In the past
we have used two standard approaches to linear discrimination:
Fisher linear discriminants (FLDs) for its computational effi-
ciency, and logistic regression (LR) for its robustness to outliers.
In addition to their algorithmic differences, these methods differ
in the optimality criterion they use to judge the quality of a clas-
sifier on a training set. LR maximizes the likelihood of correct
classification assuming a general model distribution for yn; FLD
maximizes the difference between the mean value of yn for the
two classes while minimizing the variance about those means.
Because of the (quadratic) variance estimate, FLD is more sus-
ceptible to outliers. LR, on the other hand, requires all data to
be available at the time of learning which precludes a straight-
forward online implementation. The probabilistic formalism of
LR is however particularly convenient when imposing additional
statistical properties on the coefficient W such as smoothness or
sparseness.

REGULARIZATION
In addition to the constraints on the structure of W, we found it
necessary to invoke additional regularization criteria to ensure
good generalization performance for unseen data. This has been
a common theme for BCI methods that use high-dimensional
linear classification [19], [21], [22]. The maximum-likelihood
formalism used in LR is particularly convenient as one can for-
mulate standard prior probabilities for U and V to generate max-
imum a posteriori (MAP) estimates. We have used L2 and L1
regularization terms. L2 regularization results from assuming
Gaussian process (GP) priors on spatial and temporal weight.
With the choice of the covariance parameters of the GP, one can

control the smoothness of the coefficient, essentially exploiting
the prior knowledge that neighboring electrodes measure simi-
lar EEG activity (except for noise) and that the relevant time
courses change on a slow time scale (as compared to the sam-
pling rate). L1 normalization results from assuming Laplacian
priors and encourages coefficients to be nonzero only if signifi-
cant discriminant information is provided by the particular elec-
trode and time sample. Thus, coefficients that are primarily
driven by noise in the training data are suppressed.

The list of methods provided earlier indicates that we often
use a two step approach: in the first step different sets of coeffi-
cients are trained on the data independently and separately.
Then, in a second step, all coefficients are combined to a single
overall linear classifier. This approach often shows better gener-
alization performance as compared to training all coefficients as
part of a joint optimization. The underlying assumption in this
approach is that the discriminant information provided by the
different sets of variables (different channels or different time
windows) are independent. To see this consider for instance a
FLD solution. The optimal FLD is determined by the covariance
matrix of the training data. Training coefficients separately is
equivalent to assuming a block-diagonal structure in this
covariance matrix with zero off-diagonal blocks. By training
coefficients separately, one is therefore effectively regularizing
by assuming a priori the independence of the data across time-
windows, components, or electrodes as the case may be.

FORWARD MODEL
As it turns out, the linear method allows recovering a model,
which can be used to interpret the anatomical origin of the dis-
criminative activity. That is, a “forward model” can be defined,
which models the discriminative activity in the data as a linear
spatial projection of a one-dimensional component onto the

[FIG2] (a) Traditional computer aided diagnosis can be thought of as a two stage process where a number of targets are initially
detected with a considerable amount of false positives. A subsequent step is then used to remove false positives without sacrificing the
sensitivity of the system. (b) Cortically coupled computer vision on the other hand uses EEG signatures to initially identify images of
potential interest while traditional computer vision techniques coupled with a prioritized image search (where EEG-selected images are
at the top of the search list) are used to remove false positives. 
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surface electrodes [15]. For the factorized linear discriminant
models, a one-dimensional forward model can be defined in the
same manner (K = 1):

a = Ru
uTRu

, with R =
∑

n
XnvvTXT

n . (5)

This forward model reflects the topographic distribution of
activity associated with spatial projection u as it is observed on
the sensors. In addition, a temporal forward model can be
defined which can be thought of as an impulse response, i.e., the
EEG temporal response evoked by the events

b = vTR
vTRv

, with R =
∑

n
XT

nuuTXn . (6)

If multiple components are used (K > 1) discriminant com-
ponents can be interpreted indi-
vidually for each uk and vk after
resolving a component ambigui-
ty which is inherent in the fac-
torization (3) [4].

APPLICATIONS OF BCI TO
HUMAN PERFORMANCE
AUGMENTATION IN HIGH-
THROUGHPUT TASKS
The currently limited SNR of
scalp measured EEG dramatical-
ly limits the bit rates of BCI sys-
tems, with state-of-the-art
systems below 50 b/min. Thus,
practical applications must be
designed with this limitation in
mind. Those who are neurologi-
cally locked in can benefit from
systems with such low bit rates,
since there is no alternative
means of communication, but
for most other paralysis subjects
there are alternative options with
much higher bit rates (e.g.,
decoding EMG, EOG, eye track-
ing). However, there are scenar-
ios in which BCI can be useful,
even when a user is of normal
neurological health. One exam-
ple is a high-throughput search
or decision task, when one is
asked to rapidly make decisions
or find objects of interest under
severe time constraints. In such
cases, one can potentially use
BCI to drive throughput—i.e.,
increase the rate of target detec-

tion or decision making—by decoding EEG signals, in real time,
that are indicative of a decision or an error. The goal would be to
use this decoding to enable uninterrupted speeded responses.

Previously we have used this approach for two such tasks: speeded
alternative choice [14] and rapid target detection [5]. In the case of
speeded alternative force choice, subjects often notice that they make
a mistake but only after the decision has occurred. BCI can assist a
subject in this task by correcting, on-line, these perceived decision
errors. In the case of visual target detection we find that subjects can
perceive a target much quicker than their typical self-paced search
speed. Performance can be dramatically improved by presenting
images at a fast rate and later giving priority to the perceived target
images. In both instances the BCI system leverages known electro-
physiological correlates of perception, namely error related negativity
(ERN), and the attention reorienting response (P300). Below we
describe the BCI system we developed for rapid target detection,
which we term “cortically coupled computer vision” [5].

[FIG3] (a) RSVP paradigm used in cortically coupled computer vision. A fixation cross first appears
for 2 s, and it is followed by an RSVP image sequence where each image is presented for 100 ms
(i.e, 10 Hz). An RSVP sequence typically lasts for 5 s (i.e., 50 consecutive images). (b) Examples of
satellite image chips used for the RSVP task. A helipad target is shown on the left and a nontarget
chip on the right.
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CORTICALLY COUPLED COMPUTER VISION
Image and video repositories and databases are growing at a
nearly exponential pace. An increasing problem is the efficient
searching of these repositories/databases, given their size, diver-
sity and potential sparsity of items of interest. Image search
technologies have been a major focus in the the image and sig-
nal processing and machine learning communities, with meth-
ods including applications of
traditional computer vision and
image understanding to pattern
analysis of image metadata [16],
[17]. A challenge has been to
develop new methods that enable
the user to search in an efficient
and robust way and retrieve
imagery that is of particular inter-
est to him/her.

The human visual system is the most robust general-
purpose visual processor that we know of; no computer vision
system has been able to replicate its ability to construct com-
plex visual scenes and recognize objects while maintaining
invariances to illumination, pose, and depth. It is also well
known that we are able to recognize objects in the blink of an
eye [6], with various reports claiming recognition rates as fast
as 100–150 ms post-stimulus [7], [18]. In addition, if one were
asked to search for “interesting images” in a large database,
results would depend on the individual, based on their experi-
ence, current mode of interest, etc.

Of course, having a human browse large databases is extreme-
ly cumbersome and time consuming, and it would likely yield

very little utility since most
images would never be seen.
However, one could potentially
leverage the general purpose and
subjective nature of human
search by creating a high-
throughput version of the search
task, where users browse imagery
at an extremely fast rate (e.g., ten
images per second) and then tag
each image with a metric that
represents their level of interest
in what they see.

We have used our spatiotem-
poral linear decoding framework
to develop a system for image
triage, i.e., rapid search in a
large database of images. We
term the technology cortically
coupled computer vision [5]
since we potentially couple the
decoding of cortical activity,
measured via EEG, with more
traditional computer vision and
pattern recognition technology

to jointly optimize, in terms of detection accuracy and time,
image search (see Figure 2).

We can define the task as high throughput, namely the num-
ber of images to be searched is very large and time is limited. We
have previously shown results for searching a large set of mono-
chromatic natural images, where subjects were instructed to
look for images with people in them [5]. Key is that we present

the images very rapidly (10–20
images per second), in a rapid serial
visual presentation (RSVP) paradigm
and decode EEG online as the images
are streaming by. The spatiotemporal
linear filters thus decode EEG result-
ing from multiple overlapping (in
time) stimulus events, to identify
stimuli likely to be an image of inter-
est. Below we describe a more realis-

tic application of this approach, namely searching aerial images
for objects of interest.

Trained image analysts (IAs) with experience in analyzing
overhead imagery performed a search task for two different
conditions, a baseline search and a search aided by cortically-
coupled computer vision. In both scenarios IAs were instruct-
ed to identify helipads in monochromatic aerial images (see
Figure 3). The images were commercial imagery
(DigitalGlobe) and ranged in size from 28,000 × 28,000 to
30,000 × 30,000 pixels. They were instructed to mark each
helipad they identified using a mouse click, which placed a red
dot at the particular location in the image. During both
searches, the number of helipads detected was continuously

[FIG4] Hierarchical discriminant component analysis. EEG signatures of target detection events are
estimated using multiple linear discriminators each trained at a different time window relative to
the image onset. A set of k = 1 . . . K nonoverlapping windows functions hk are chosen and the
discriminators uk each associated with the corresponding time window are trained separately. At a
second level, the discriminators uk are fixed and coefficients ck are learned. The resulting
discriminant model takes the form of (4) where additional structure has been enforced on the
temporal weights: vk = hkck.
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tracked as a function of search time. IAs searched until they
decided to terminate the task.

In the baseline search, IAs could pan through the imagery at
full resolution using the arrow keys on the keyboard, examining
one 1,024×768 subimage at a time, or zoom out to 1/40 resolu-
tion using the ‘z’ key to view the entire image at once and their
current location within it. Most IAs used a “mow-the-lawn”
strategy, panning across rows or columns in a systematic way. A
few used a more directed strategy, in which they utilized the
low-resolution image to identify candidate regions on which to
spend most time searching at full resolution.

In the cortically coupled computer vision condition, the
IAs first performed an RSVP triage of the imagery, followed by
a prioritized manual search of the imagery. 512 × 512 sub-
images were presented at 5 or 10 Hz, depending on prelimi-
nary experiments on the individual IAs, and EEG was
recorded at 1,000 Hz sampling rate using a 64 electrode sys-
tem (BioSemi) in a standard 10–20 montage. A linear classifi-

er was used to decode 64 channels of EEG and assign a proba-
bility, to each image, that a target was present. Spatial
weights uk were trained independently for multiple windows
(K = 10) covering 1 s of data following the onset of the
image; these were then linearly combined to assign a target-
probability for each single trial (image) as explained in Figure
4. (LR used all samples within each window as separate train-
ing exemplars and mean activity preceding the stimulus was
subtracted for each trial. These measures make the resulting
classifier robust to slow drifts and fast sample-by-sample fluc-
tuations. The resulting classifier is shown in Figure 5.) IAs
then performed the prioritized manual search at their own
pace, however, the order of the chips was now determined by
the EEG decoding. If decoding accuracy is high, images with
targets would be examined first. IAs again marked, using the
mouse, all helipads they saw, while we tracked their detection
rate as a function of time. Figure 6 summarizes our results
for six subjects for two different broad-area images.

[FIG5] Scalp maps for one IA. The IA made no behavioral response (no button press) so all activity is purely decoded brain state
unrelated to motor activity. Each scalp map represents the forward model ak computed for the linear discriminator uk, each learned for
a time window specified on the top of each scalp map (time relative to stimulus onset). The K = 10 time windows are linearly
combined using the learned weightings ck. The strongest weight here corresponds to a time window around 300 ms post-stimulus
which shows a parietal scalp distribution. This is consistent with the hypothesis that the main contribution to discrimination is the
single-trial correlate of the P300. The histograms of the discrimination signal yn show that the linear classification, based on multiple
windows, learns an integrated signal which can discriminate target from nontarget. 
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Clear is a consistent and substantial increase in the rate of
target detection, which is a result of the triaging and re-prioriti-
zation. For the image with fewer targets (targets are more
sparse) the relative difference between the cortically-couple
computer vision and baseline search is most dramatic.

CONCLUSIONS
BCIs offer tremendous potential for improving the quality of life
for those with severe neurological disabilities. At the same time,
it is now possible to use noninvasive systems to improve per-
formance for time-demanding tasks. Signal processing and
machine learning are playing a fundamental role in enabling
applications of BCI and in many respects, advances in signal
processing and computation have helped to lead the way to real
utility of noninvasive BCI.

The linear methods we present in this article are only a sub-
set of signal processing and machine learning with potential
applications. Attractive about our approach is the common
framework of how we represent the data space and systematical-
ly decompose it spatially, temporally, or both simultaneously. A
challenge continues to be how to best regularize these decom-
positions given the large parameter space and relative small
number of examples. Future work will involve exploiting prior

knowledge of both the signal characteristics as well as the task
to improve the learning of the spatiotemporal filters and achieve
high decoding accuracy.
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