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Abstract|We have shown previously that non-stationary
signals recorded in a static multi-path environment can of-
ten be recovered by simultaneously decorrelating varying
second order statistics. As typical sources are often moving,
however, the multi-path channel is not static. We present
here an on-line gradient algorithm with adaptive step size
in the frequency domain based on second derivatives, which
we refer to as multiple adaptive decorrelation (MAD). We
compared the separation performance of the proposed algo-
rithm to its o�-line counterpart and to another decorrelation
based on-line algorithm.

I. Introduction

Blind source separation is an ongoing research topic.
Among the unresolved problems we consider two of par-
ticular importance. First, most of the known algorithms
try to invert a multi-path acoustic environment by �nding
a multi-path �nite impulse response (FIR) �lter that ap-
proximately inverts the forward channel. However, a per-
fect inversion may require fairly long FIR �lters. In our
experience such situations occur in strongly echoic and re-
verberant rooms where most, if not all, current algorithms
fail. Secondly, changing forward channels due to moving
sources, moving sensors, or changing environments require
an algorithm that converges su�ciently quickly to main-
tain an accurate current inverse of the channel. It is this
second problem that we address here.

In terms of separation criteria to our knowledge there are
three types of algorithms for blind source separation (BSS )
of a convolutive mixture of broad-band signals. Algorithms
that diagonalize a single estimate of the second order statis-
tics, algorithms that simultaneously diagonalize second or-
der statistics at multiple times exploiting non-stationarity,
and algorithms that identify statistically independent sig-
nals by considering higher order statistics.

The simpler algorithms generate decorrelated signals by
diagonalizing second order statistics [1], [2]. They have a
simple structure that can be implemented e�ciently[1], [3],
[4], but are not guaranteed to converge to the right solu-
tion as single decorrelation is not a su�cient condition to
obtain independent model sources [5], [1], [2]. Instead, for
stationary signals higher order statistics have to be consid-
ered [6], either by direct measurement and optimization of
higher order statistics [6], [7], [8], [9], [10], or indirectly by
making assumptions on the shape of the cumulative den-
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sity function (cdf ) of the signals [11], [12], [13]. The former
methods are fairly complex and di�cult to implement. The
latter methods fail in cases where the assumptions on the
cdf are not accurate. Finally, for non-stationary signals it
is known [1], and has been demonstrated [14], [15], [16],
[17], that one may recover the signals by simultaneously
diagonalizing second order statistics estimated at di�erent
times.

On-line algorithms are available for the single decorrela-
tion [1], [2], [3], [18] approach and the indirect higher order
methods [19], [20], but they have the same limitations as
their o�-line counterparts. More recently a number of sin-
gle decorrelation algorithms have been presented that claim
good performance for non-stationary signals. Some implic-
itly exploit non-stationarity [21], [4] while others reduce
the number of required constraints by using low dimen-
sional parameterizations of the �lters [22], [21]. It is not
di�cult to think also of naive ways to transform our o�-
line algorithm [14], [15] for multiple decorrelation into an
on-line version. But a rigorous derivation is more desirable,
since we need fast convergence of the non-static �lters, and
the data may be visited only once.

We should mention that there is an obvious di�culty
here in terms of non-stationarity of the mixing �lters and
the non-stationarity of the signals. Our suggested crite-
ria exploits short time non-stationarity of the signals such
as in speech. During the time that multiple second order
statistics are collected or estimated we assume the mixing
�lter to remain approximately the same. That is, the sen-
sors (microphones) and the source locations do not change
with respect to the environment. If the �lter changes too
quickly, one may not be able to collect enough statistics to
do the decorrelation for that time segment | even if the
algorithm converges immediately to the correct solution.
For any algorithm that is based on non-stationarity of the
signal this will place an upper bound on the permissible
variability of the environment. The convergence delay of
the actual optimization can only lower that bound. Con-
vergence is therefore a critical issue which we will try to
address without complicating the algorithm too much and
spending too much processing power. We suggest the use
of an adaptive step size in the frequency domain motivated
by second derivatives of the of the cost function. This ef-
fectively amounts to an adaptive power normalization in
each frequency bin.

This paper is organized as follows. In section II we de-
rive an on-line gradient algorithm starting with a time do-
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main diagonalization criteria for multiple times. In sec-
tion III-A a fast implementation in the frequency domain
is obtained by making an approximation which is valid in
the limit of small �lter sizes compared to the window size
of the Fourier transform. The adaptive step size in the
frequency domain is derived in section III-B. In the last
section we will compare the results of the proposed multi-
ple adaptive decorrelation (MAD) algorithm in simulations
with another on-line separation algorithm | an improved
version of the adaptive decorrelation �lter [3], [18], [1].

II. On-line time-domain decorrelation

Assume non-stationary decorrelated source signals
s(t) = [s1(t); :::; sds(t)]

T . These signals are observed in
a multi-path environment A(�) of order P as x(t) =
[x1(t); :::; xdx(t)]

T ,

x(t) =
PX
�=0

A(�)s(t � �) + n(t) : (1)

We assume at least as many sensors as sources, i.e. ds � dx.
It is known that under certain conditions on the coe�cients
of A(�) the multi-path channel is invertible with an FIR
multi-path �lter W(�) of suitably chosen length Q [23],

ŝ(t) =

QX
�=0

W(�)x(t � �) : (2)

It has been shown [1] and demonstrated [14], [15], [16], [17]
that non-stationary source signals can be recovered by opti-
mizing �lter coe�cientsW such that the estimated sources
ŝ(t) have diagonal second order statistics at di�erent times,

8t; � : E[ŝ(t)ŝH(t� �)] = �̂s(t; �) : (3)

Here �̂s(t; �) = diag([�̂1(t; �); :::; �̂ds(t; �)]) represent the
autocorrelations of the source signals at times t which have
to be estimated from the data. This criteria determines
the estimate ŝ(t) at best up to a permuted and convolved
version of the original sources s(t). In previous works [14],
[15], [16], [17] second-order statistics at multiple times have
been estimated and simultaneously diagonalized in the fre-
quency domain. In the present work, in order to derive an
on-line algorithm we will consider the time domain directly
and transfer the algorithm into the frequency domain later
to get a more e�cient and faster-converging on-line update
rule. For the expectation we will use the sample average
starting at time t, i.e. E[f(t)] =

P
� 0 f(t + � 0). We can

then de�ne a separation criteria (3) for simultaneous diag-
onalization with,

J (W) =
X
t

J (t;W) =
X
t

kJ(t;W)k2 (4)

=
X
t;�

E[ŝ(t)ŝH(t� �)] � �̂s(t; �)
2 (5)

=
X
t;�


X
� 0

ŝ(t+ � 0)ŝH(t� � + � 0)� �̂s(t; �)


2

;

(6)

where we use the Frobenius norm given by kJk
2

=
Tr(JJH ). We may now search for a separation �lter by min-
imizing J (W) with a gradient algorithm. It is straightfor-
ward to compute the stochastic gradient of this optimiza-
tion criteria with respect to the �lter parameters.1 We
mean stochastic in the conventional sense of on-line algo-

rithms that take a gradient step @J (t;W)
@W(l) for every t instead

of summing the total gradient before updating. This leads
to the following expression,

@J (t;W)

@W(l)
=
X
�

 X
� 0

ŝ(t+ � 0)ŝH(t+ � 0 � �) � �̂s(t; �)

!

�
X
� 00

ŝ(t+ � 00 � �)xH (t+ � 00 � l)

+
X
�

 X
� 0

ŝ(t+ � 0 � �)ŝH(t+ � 0)� �̂s(t; �)

!

�
X
� 00

ŝ(t+ � 00)xH(t+ � 00 � � � l)

To simplify this expression, we show that the �rst and
second sums over � can be made equal. In the gradient
descent procedure we may choose to apply the di�erent
gradient terms in these sums at times other than the time
t. Following that argument, we can replace t with t� � in
the second sum, which e�ectively uses the value of the sum
in the gradient update at time t0 = t�� . In addition, if the
sum over � runs symmetrically over positive and negative
values, we can change the sign of � in the second sum. It
can be argued that the diagonal matrix �̂s(t; �) remains
unchanged by these transformations, at least in a quasi-
stationary approximation. The resulting update at time t
for lag l with a step size of � simpli�es to

�tW(l) = �2�
X
�

 X
� 0

ŝ(t+ � 0)ŝH(t+ � 0 � �)� �̂s(t; �)

!

�
X
� 00

ŝ(t+ � 00 � �)xH (t+ � 00 � l) :

(7)

The sums over � 0 and � 00 represent the averaging operations
while the sum over � stems from the correlation in (3).
Denote the estimated cross-correlation of the sensor signals
as,

R̂x(t; �) = E[x̂(t)x̂H (t� �)] : (8)

By inserting (2) into (7) and using (8) we obtain for the
update at time t,

�tW = �2�J(t) �W � R̂x(t);

with J(t) =W � R̂x(t) ?W
H � �̂s(t):

(9)

In this short hand notation convolutions are represented by
�, and correlations by ?, and time lag indices are omitted.

1It is easy to see that the optimal estimates of the autocorrelation

�̂s(t; �) for a given W are the diagonal elements of E[ŝ(t)ŝH (t� �)].
Therefore only the gradient with respect to W is needed.
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To obtain this expression we assumed that the estimated
cross-correlations don't change much within the time scale
corresponding to one �lter length, i.e. R̂x(t; �) � R̂x(t +
l; �) for 0 < l � Q.

III. A frequency domain gradient algorithm

In this section we will outline an on-line frequency do-
main implementation of this basic gradient algorithm. We
try to reduce the computational cost as well as improve the
convergence properties of the gradient updates.

A. Frequency domain gradient

Because the convolutions in (9) are expensive to com-
pute, we transform this gradient expression into the fre-
quency domain with T frequency bins. If we assume small
�lters compared to the number of frequency components,
i.e. Q � T , the convolutions factor. Thus to a good ap-
proximation the stochastic gradient update rule (7) in the
frequency domain is

�tW(!) = 2�J(t; !)W(!)R̂x(t; !) ;

with J(t; !) =W(!)R̂x(t; !)W
H(!)� �̂s(t; !) :

(10)

Here W(!) and R̂x(t; !) are the T point discrete Fourier

transform ofW(�) and R̂x(t; �) respectively. We note that
the same expression can be obtained directly in the fre-
quency domain by using the gradient of

P
t;w J (t; !) =P

t;w kJ(t; !)k
2 with respect to W�. In a gradient rule

with complex variables this represents the combination of
the partial derivatives with respect to the real and complex
parts of W. In this formalism the update rule for a com-
plex parameter w with learning rate � is �w = �2� @

@w�

[24].

B. Power normalization

In order to improve the convergence properties of this
algorithm we would like to consider some second order
gradient expressions. A proper Newton-Raphson update
requires the inverse of the Hessian. Computing the exact
inverse Hessian seems to be quite di�cult in this case. An
admittedly crude, yet common, approach is to neglect the
o�-diagonal terms of the Hessian. This should give e�-
cient gradient updates in the case that the coe�cients are
not strongly coupled. If we ignore the constraints on the
�lter size in the time domain, the approximate frequency
domain gradients updates depend only on W(!) as one
can see in (10). The parameters are therefore decoupled
for di�erent frequencies. However the several elements of
W(!) at a single frequency may be strongly dependent, in
which case a diagonal approximation of the Hessian would
be quite poor. In fact in our experiments we obtained poor
stability with gradient steps modi�ed by this diagonalized
Hessian approximation, at least when the powers on di�er-
ent channels were very di�erent. Given that observation we
choose not to modify the gradient directions of the matrix
elements W(!) for a given frequency. Instead we follow

the original gradient but adapt the step size with a nor-
malization factor h(t; !) for di�erent frequencies,

�tW(!) = ��h�1(t; !)
@J (t; !)

@W�(!)
: (11)

As a motivation for this step size normalization consider
the following. For a real valued square cost, J(z) = azz�

in the complex plane the proper second order gradient step
corresponds to (@2J(z)=@z@z�)�1@J(z)=@z� = z. The cor-
responding expression in our current cost function can be

computed to @2J
@2W�

ij
@2Wij

= 2((WRx)
H(WRx))jj. It is real

valued and independent of i. We want to have the same
step size for all j. Therefore we sum over j, and use

h(t; !) =
X
j

@2J (t; !)

@W �
ij(!)@Wij(!)

= kW(!)R̂x(t; !)k
2 ;

(12)

This is e�ectively an adaptive power normalization. In our
experiments the resulting updates were stable and lead to
faster convergence.

C. Block processing

In practice we implement the MAD algorithm as a
block processing procedure. The signals are windowed and
transformed into the frequency domain, i.e. the segment
xi(t); :::; xi(t+ T � 1) gives frequency components xi(t; !)
for ! = 0; :::; T � 1. These are used to compute the esti-
mated cross-correlations directly in the frequency domain,
i.e. R̂x(t; !) = E[x(t; !)xH (t; !)]. In an on-line algorithm
the expectation operation is typically implemented as an
exponentially windowed average of the past. For the cross-
correlations of the observations in the frequency domain
this reads

R̂x(t; !) = (1� )R̂x(t; !) + x(t; !)xH(t; !) : (13)

where  represents a forgetting factor to be chosen accord-
ing to the stationarity time of the signal.
At time t also a gradient step (11) is performed with the

current estimate R̂x(t; !). As we compute the updates in
the frequency domain it is quite natural to implement the
actual �ltering (2) with an overlap-save routine. For this,
one takes signal windows of size 2T and steps by T samples
to obtain the next block of data. We can use these blocks
of data for both the gradient and estimation updates. But
we may need to perform more gradient steps before visiting
new data. That is, we may want to update more frequently
within that time T . In general, for a given frame rate r we
compute the 2T frequency components and update W(!)

and R̂x(t; !) at t = T=r; 2T=r; 3T=r; :::. Conventional over-
lap and save corresponds to r = 1.

IV. Experimental results

In the following we measure performance with the Signal
to Interference Ratio (SIR), which we de�ne for a signal s(t)
in a multi-path channel H(!) to be the total signal powers
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of the direct channel versus the signal power stemming from
cross channels,

SIR[H; s] =

P
!

P
i jHii(!)j

2


jsi(!)j

2
�P

!

P
i

P
j 6=i jHij(!)j2 hjsj(!)j2i

: (14)

In the case of known channels and source signals we can
compute the expressions directly by using a sample average
over the available signal and multiplying the powers with
the given direct and cross channel responses.
We compared the performance of the proposed MAD al-

gorithm to its corresponding o�-line counterpart [14], [15],
and to a second decorrelation algorithm presented in [3].
This so-called transformed domain adaptive decorrelation
algorithm (TDAD) is a faster frequency domain implemen-
tation of the adaptive decorrelation algorithm presented by
Weinstein et al. in [1]. It is based on decorrelating the co-
variance at a given time rather than at multiple times. As
a result in principle it is not guaranteed to converge to
the correct solution, but it has shown good performance
in some simulated environments for a two source and two
microphone case [3].
The most important question to address here is the adap-

tion speed of the algorithm. The multi-path channel may
change very rapidly with moving sources. In particular
with fast head movements of a human subject the room
response for that speaker may change quite abruptly. The
question therefore is how much signal is required for MAD
if the multi-path channel has completely changed.
We used one simulated room response and one real room

recording with a few seconds of signal each at 8 kHz. In all
instances the separation �lters where 2048 taps. In both
the simulated and real room recordings 40 randomly-chosen
segments out of 15-second signals where used (�gure 1 and
2). The mean and standard deviation for varying signal
length are reported in �gure 3 and �gure 4. From these
graphs we can conclude the following: 1. As expected we
see that with increasing signal length the performance of
MAD increases. 2. In all cases not more than a few seconds
(3s-6s) of signal are required in order to converge to the
best achievable performance. Within the margin of signal
dependent variation in these particular environments the
performance of MAD approaches that of the o�-line algo-
rithm within approximately 3.5s. 3. The TDAD algorithm
is very dependent on the signal. It's average performance
is considerably better than our algorithm for the simulated
room but it fails for our recording in a real room. This
observation is consistent with the results reported in [3] on
simulated environments and with the theoretical consider-
ations on convergence to correct solutions [2].
The simulated room was computed using the algorithms

of [25]2, with 2048 �lter taps at 8KHz (256ms). We re-
stricted the current experiments to the case of two sources
and two microphones. The test signals consisted of a sub-
ject counting digits and a music source (see �gure 1), to

2We thank Joseph G. Desloge and Michael P. O'Connell of the
Sensory Communication Group, Research Laboratory of Electronics,
Massachusetts Institute of Technology for the software implementa-
tion in MATLAB.

0 5 10 15

source signals

seconds

Fig. 1. Test sequences for the simulated room (see main text). These
are �fteen-second speech and music sources sampled at 8 kHz.
Forty di�erent sections of varying length were used to estimate
the SIR improvements.

0 5 10 15 20 25 30

separateded signals

seconds

Fig. 2. Two separated speech signals recorded in a real o�ce en-
vironment. These particular results corresponds to a 15 dB SIR
improvement from 0.25 dB before separation. In the �rst �fteen
seconds the speakers alternately spoke short digits. Because of
the alternation, we could use this period to measure cross-talk
power. Forty random sections of the last �fteen seconds were
used for training.
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Fig. 3. Average SIR improvement before and after separation with
the MAD (solid line) and TDAD (dashed line) algorithms in
a simulated o�ce environment with two microphones and two
sources (see text). The bars represent the standard deviation ob-
tained by running the algorithms on 40 di�erent sections of the
signal. The data-point on the very right represents the perfor-
mance of the o�-line multiple decorrelation algorithm.

1 2 3 4 5 6 7
−4

−2

0

2

4

6

8

10
Start−Up performance for separation of two sources in real room

signal length in s

S
IR

 im
pr

ov
em

en
t i

n 
dB

Fig. 4. Average SIR improvement before and after separation with
the on-line MAD (solid line) and TDAD (dashed line) algorithms
for real room recordings with two microphones and two sources
(see text). The bars represent the standard deviations obtained
by running the algorithms on forty di�erent sections of the signal.
The data-point on the far right is the performance of the o�-line
multiple decorrelation algorithm.

provide a more or less continuous stream of signal without
long interruptions. The room is a 5m x 5m x 3m rectangle
with the absorption characteristic of a typical o�ce room
(carpet oor, sheet-rock or gypsum-board walls, and acous-
tic tiles in the ceiling). The two microphones are placed at
one of the walls at a distance of two meters from each other.
That wall was chosen to be anechoic in order to generate a
directional characteristic for the microphones. The sources
have been placed at a distance of 1.5meters in front of the
microphones

The real room recordings were obtained in a quiet o�ce
environment of about the same size. The �rst �fteen sec-
onds of signal contain alternating speech and where used to
measure the cross talk powers before and after separation.
The second �fteen seconds of signal were used for training.

In the end of the previous section we pointed out that it
might be advantageous for the block algorithm to use larger
frame rates, though the computational cost is higher. In
particular for realistic environments we are using �lters of
considerable length (256ms). Updating at a slower frame
rate might not be su�cient. In TDAD a frame rate of r = 1
is used. In the previous experiments our MAD algorithm
used a frame rate of r = 16, which results in an update
of the cross-correlation and �lter coe�cients every 16ms.
In order to choose the frame rates we determined the SIR
improvements for the same real-room recordings as before
for varying frame rates. In �gure 5 we see that increasing
the frame rate will in fact improve the performance. For
this particular signal and environment a frame rate of 8
seems su�cient.

Finally we want to note the implementation of this al-
gorithm in C runs in real time on a 155 kHz Intel Pentium
processor for a 2 input, 2 sources problem with a frame
rate of 8 at 8 kHz sampling rate and T=2048

V. Conclusion

A key result of this work is that an on-line source-
separation algorithm which supposedly exploits multiple
decorrelation can visit the signals only once and yet within
three-to-four seconds achieve the same separation perfor-
mance as an o�-line multiple-decorrelation algorithm. At
any time the on-line algorithm has only one estimate of the
cross-correlation matrix. This stands in contrast to the o�-
line algorithm that diagonalizes multiple cross-correlation
matrices by repeatedly accessing their values, which is
equivalent to revisiting the data many times. Both algo-
rithms assume non-stationarity of the signal so that mul-
tiple decorrelations provide su�cient conditions to unam-
biguously separate the sources. However in the on-line al-
gorithm the multiple decorrelations are facilitated through
a stochastic gradient that diagonalizes a changing average
cross-correlation. To our knowledge this di�ers from all
previous adaptive decorrelation algorithms, which drop the
explicit averaging of the single cross-correlation matrix to
get a stochastic update rule.
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Fig. 5. Dependence of the MAD algorithm on the number of gradient
updates per signal block size (�lter size). For these results a
�lter length of 2048 taps was used. At 8 kHz a frame rate of 4
corresponds to an update every 64ms.
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