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ABSTRACT

We propose a new performance criteria and update mechanism for
the blind decorrelation of an array of sensor measurements into inde-
pendent sources, assuming each sensor measures a different convolu-
tive mixture of statistically independent non-stationary sources.
Specifically, the criteria is the sum of the magnitude squared coher-
ence functions between all possible distinct pairs of outputs produced
by a matrix of adaptable filters operating on the sensor measurements
in the frequency domain. We then derive an efficient overlap-save on-
line update equation based on stochastic gradient descent and recur-
sive estimation of the coherence functions. We demonstrate separation
within fractions of a second and convergence within a few seconds on
real room recordings. We attribute this speed to the normalization
and recursive estimates of the coherence functions.

1  INTRODUCTION

While the theoretical underpinnings of the blind source separation (BSS) p
lem have advanced tremendously in the last decade (see [1]-[2]), the develop
of fast, efficient, and robust algorithms that can solve real-world problems is
lacking. This is particularly true for problems involving the presence of ma
sources, more sources than sensors, the interference of diffuse noise, and the
ration of convolutive mixtures. It is the latter problem with which are concerned
this paper.

The problem of separating convolutive mixtures of unknown sources arise
several application domains, of which the most famous is the so-called coc
party problem. There, the problem is to recover the speech of multiple spea
who are simultaneously conversing in a room, where their acoustic speech sig
are each filtered by a different speaker-to-microphone room response, dependi
their position, and then linearly mixed at the microphones. In the special case o
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meeting room transcription task, the goal is to recover the individual speakers f
the microphone signals sufficiently well to allow for use in an automatic spe
recognizer.

1.1 Approach

We have previously studied this problem for the special case when the so
signals are non-stationary processes ([3]-[5]). Non-stationarity can arise thro
changes in the first-order distribution of a signal, as evidenced by changes in po
changes in second-order joint distributions across time, as evidenced by chang
spectrum, or higher-order changes.

Source separation is primarily based on the assumption of statistical inde
dence of the source signals. For stationary signals, second-order statistics (de
lation) is not sufficient to identify and invert the mixing coefficients [7], and highe
order statistics have to be considered either explicitly ([9]-[11]) or implicitly ([14
[17]). However, for non-stationary signals, varying second-order statistics prov
a sufficient constraint for separation [6]. In this case, multiple covariance matr
estimated at different times can be simultaneously diagonalized ([4],[6]). T
approach has been demonstrated for the convolutive case ([3]-[5],[18]), and
been thoroughly analyzed for the instantaneous case.

Thus, in attempting to separate non-stationary signals using multiple decor
tion, we are faced with the problem of designing an algorithm thatrequiresnon-sta-
tionary signals for convergence. However, in adaptive signal processing, we
used to formulating solutions to problems that depend on stationarity, and
applying them to non-stationary signals on the assumption of “adiabatic” chan
where the rate-of-change of stationarity is less than the time constant of the ad
tion. For example, in developing the recursive least squares (RLS) algorithm,
optimal solution of the Wiener-Hopf equations are solved at timet in terms of the
optimal solution at timet-1, given the assumption of stationarity. However, th
does not prevent us from applying the RLS to non-stationary signals, through
introduction of an appropriate forgetting factor.

If we were to attempt an analogous approach for BSS, we might ask the q
tion: given that we have found a set of filters that “best” separate the outputs at
t-1, and a new set of measurements at timet, how do we update the filters to bes
separate the outputs, making use of the solution at timet-1? An answer to this ques-
tion is not so simple. The reason for this is that what we do with the new meas
ment depends on whether it is part of the previous stationary regime, or represe
transition to a new stationary regime. In the first case, the new data should be
to improve the estimate of the current covariance, implying the use of a large
getting factor. In the second case, the data represents the beginning of new c
ance matrix for simultaneous diagonalization with previous covariance matri
implying a small forgetting factor is appropriate. Therefore, in addition to the co
ventional trade-off between convergence speed and misadjustment, we now h
trade-off between estimation accuracy and novel information when measuring
relation.
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As a compromise, the approach we take here is to focus on how to effecti
and efficiently measure decorrelation, and then turn that measure into a criteri
adaptation purposes. In this paper, we propose to use thecoherence functionas a
measure of signal decorrelation. The coherence function is the frequency-do
equivalent of the correlation coefficient, and represents the degree of correlatio
a function of frequency. It has the desirable property of being scaled such that
independent of the absolute power of either signal.

2  PROBLEM STATEMENT

The problem we seek to solve is the following:N unknown source signals are
convolutively mixed and measured byM sensors

 (1)

wheres is an unknown (Nx1) vector of source signals,A is an unknown (MxN)
mixing matrix of channel impulse responses, andx is a measured (Mx1) vector. The
convolution operator * here implies both matrix multiplication and convolution. W
then seek a matrix of filters operating on the sensor measurements

 (2)

such that the components of the (Nx1) outputy are statistically independent, where
W is a (NxM) matrix of filter impulse responses.

In order to understand what an independence criteria can accomplish, it
fices to determine the set of all operations ons such that the resulting signals are
still independent. Clearly a reordering of the components ofs does not affect their
independence. The components ofs can also be separately filtered, either linear
or nonlinearly, without affecting their independence. Thus,y can only approximate
s to within a permutation and filtering operation. The latter limitation means th
BSS is distinct from the problem of blind deconvolution. That is, independen
based BSS by itself cannot recover the components ofs from filtered versions of
themselves. For this reason, the diagonal components ofW in the time domain are
often fixed to a unity gain delta function, possibly with a delay.

In the time domain, independence must be tested not only at the same in
of time, but for all possible combinations of delays of the components ofy. This
problem can be ameliorated by performing the separation in the frequency dom
In the frequency domain, convolution becomes multiplication and (2) becomes

 (3)

Note that because the signals areassumednon-stationary, we have written their fre-
quency response as animplicit function of time. We have written the (NxM) matrix
of filter frequency responses,W(ω,t), as an implicit function of time with an eye
towards adaptation rules that we will develop later.

x t( ) A* s t( )=

y t( ) W* x t( )=

Y ω t,( ) W ω t,( ) X ω t,( )⋅=
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Equations (2) and (3) describeany linear system. Ultimately, we must imple-
ment them in a specific architecture. In this paper, we use finite impulse resp
(FIR) filters because this allows the actual filtering operation to be carried out in
frequency domain.

3  THE COHERENCE FUNCTION AS SEPARATION CRITERIA

The criteria we adopt is the sum of themagnitude squared coherence function
between allNx(N-1)/2 possible distinct pairs of outputs

 (4)

where  is thecoherence function between outputsi andj, defined by

 (5)

and where is thecross-power spectral densitybetween outputsi andj at

time t. The squared coherence function is real, constrained to lie between 0 a
for all frequencies, and is identically equal to one wheni=j. This latter property
means that it is immaterial whether the summation in (4) includes the casei=j.

We can express all these equations in matrix form as

 (6)

whereCYY is a (NxN) matrix of coherence functions whose components are

Equation (6) represents theFrobenius squared normof the coherence function
matrix. Again, because the diagonal elements of the coherence function matri
identically one, it is immaterial whether we include them in the criteria. We c
also express the matrix of coherence functions

 (7)

in terms of a (NxN) matrix of cross-power spectral densities between the outpu
SYY, whose components are , and a diagonal matrix,ΛYY, whose diagonal ele-

ments are . Inserting (7) into (6) results in:

 (8)

J CYiYj
ω t,( ) 2

i j,
∑

t
∑=

CYiYj
ω t,( )

CYiYj
ω t,( )

SYiYj
ω t,( )

SYiYi
ω t,( )SYjYj

ω t,( )
-------------------------------------------------------=

SYiYj
ω t,( )

J CYY ω t,( ) 2

t
∑ trace CYY

H ω t,( ) CYY ω t,( )⋅[ ]
t

∑= =

CYiYj

CYY ω t,( ) ΛYY
1 2⁄– ω t,( ) SYY ω t,( ) ΛYY

1 2⁄– ω t,( )⋅ ⋅=

SYiYj

SYiYi

J trace ΛYY
1– ω t,( ) SYY ω t,( ) ΛYY

1– ω t,( ) SYY ω t,( )⋅ ⋅ ⋅[ ]
t

∑=
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3.1 Estimating the output-output cross-power spectral densities

Formally, the cross-power spectral density is the Fourier transform of
expected value of the cross-correlation in the time domain. However, it can als
obtained as the expected value of the product of the signals in the freque
domain. In order to efficiently estimate the output-output cross-power spectral d
sity, we use a recursive estimator

 (9)

whereγ is a forgetting factor, constrained to for stability, andT is a block
processing time (frame rate) that represents the time it takes to estimateY. The for-
getting factor and block processing time combine to make the effective memor
the estimator to beT/(1-γ). Taking the expected value of both sides of (9) readi
shows that it is anunbiased estimator forstationary signals.

3.2 Weight update

Clearly, in order to capture short-term non-stationarity we must use the
chastic gradient approximation. Thus, in order to find the weight-update equa
we take the derivative of the criteria (8) with respect to the complex weights in
frequency domain and then drop the summation over time, updating the weigh
the end of each time block.

We are then faced with the question of whether to take the derivatives w
respect to the power spectral densities . Since they always appear in

denominator, this implies simultaneously decorrelating the outputsandmaximizing
the output power. However, the output powers are already constrained by fixing
diagonal filters ofW to unity gain delta functions. Hence, for the purposes of th
paper, we regard them as a constant normalization factor. Then, it is not difficu
show that the gradient update equation is

 (10)

whereSYX is a (NxM) matrix of cross-power spectral densities between theoutputs

and theinputs:

 (11)

It is important to note that the recursive nature of the cross-power spectral de
estimates in (9) and (11) means thatSYY cannot be obtained directly fromSYX

through a simple multiplication by the weights. This differs from all previous me
ods that we have seen, including our previous work, which use a single recu
estimate ofSXX involving the inputs only, and then obtainsSYX andSYY through
multiplications involving the weight matrixW.

SYY ω t,( ) γ SYY ω t T–,( ) 1 γ–( ) Y ω t,( ) YH ω t,( )⋅+=

0 γ 1< <

SYiYi

W ω t,( )∆ ηΛYY
1– ω t,( ) SYY ω t,( ) ΛYY ω t,( )–[ ] ΛYY

1– ω t,( ) SYX ω t,( )⋅ ⋅ ⋅–=

SYX ω t,( ) γ SYX ω t T–,( ) 1 γ–( ) Y ω t,( ) XH ω t,( )⋅+=
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3.3 Implementation details

The entire algorithm consists of equations (3) and (9)-(11) and is entirely co
patible with the overlap-save method of frequency domain adaptive filtering. T
overlap-save method implements linear convolution in the frequency domain w
the discrete Fourier transform (DFT), or its efficient counterpart, the fast Fou
transform (FFT). However, since the DFT corresponds to circular convolution
the time domain, the filters must be padded with zeros, in turn requiring the use
larger input buffer. As a result, only the latter part of the output in the time dom
is valid. In the context of the present algorithm, it is thus incorrect to directly u
the complex outputY=W*X in updating the cross-power spectral densities in (
and (11). Rather, they must first be transformed into the time domain (also requ
to obtain the system output), and the invalid parts zeroed prior to transforming b
into the frequency domain to obtain a validY for use in (9) and (11). Note that this
is not required forX, since the input buffer is always filled with valid input sample
prior to transforming into the frequency domain. Although other frame rates re
tive to the filter size can be used, a 50% overlap is the most compuationally effic
and is the one adopted for the simulations presented next.

The computational complexity of the algorithm scales linearly in the numb
of inputs and quadratically in the number of outputs. For the simulation to be p
sented next, a two input - two output problem at a sampling rate of 8 kHz with 2
taps ran in approximately 1/20 real-time for compiled c-code on a 866 MHz P
tium III. Thus, the algorithm is entirely suitable for real-time operation for man
input, many-output problems.

4  EXPERIMENTS

The data set used here first appeared in [3], and later [4]-[5]. Two live spea
were recorded in a real room of dimensions 3m x 3.6m x 2.3m using two unidir
tional microphones, 50 cm apart and 150 cm from the speakers, and sampled
kHz. The training data is a 15 second recording where both speakers are con
ously and simultaneously talking. The test data consists of another 15 se
recording where the two speakers alternately say the digits such that only
speaker is active at a time. The two data sets were recorded consecutively to e
that the speakers maintained their position and thus that the room responses w
not change.

For the test data, the active periods of each speaker were hand segmen
order to obtain an accurate measurement of signal separation. Whenever a p
mance measure was required during training, the training weights were used t
ter the entire 15 seconds of test data. The resulting output was then analyzed
the aforementioned segmentation such that whenever a speaker was talking
power in both the enhanced and rejection channels were measured and acc
lated. Thesignal to interference ratio (SIR) was then calculated as
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The effect of various learning rates on the algorithm’s convergence is show
Fig. 1. The test set performance was measured duringon-line adaptation on the
training set aftereachweight update, which for 256 taps at 8 kHz occurred eve
0.032 s. With the forgetting factor set atγ=0.5, the effective memory depth was thu
0.064 s. At the highest learning rate (0.1), a separation of 3 dB was achieved
only 10 weight updates or approximately 1/3 s, and a separation of 6 dB
achieved in approximately 1.3 s. However, this learning rate also exhibited s
undesirable misadjustment about the mean, particularly around the 12 s mark
not clear what causes this temporary degradation in performance, but its exte
nature suggests possible movement of one of the speakers during the training
ances. The smaller learning rates are less susceptible to this, at the expens
slower initial convergence time.

Figure 1. Test set performance during on-line adaptation on training set for various lear
rates. Other parameters areγ = 0.5 andNtaps = 256.
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The effect of various forgetting factors on the algorithm’s on-line convergen
is shown in Fig. 2. Early in the training (< 2s), the forgetting factor does not seem
play an important role. However, beyond this, a forgetting factor ofγ=0.9 clearly
under performs the other settings. At the other extreme, a forgetting factor ofγ=0.3
outperforms the other settings between 3s and 7s, but then under performs. Ov
the best performance was obtained for a forgetting factor ofγ=0.5.

Finally, theoff-line performance for various filter sizes is shown in Fig. 3 as
function of the length of training data. The algorithm was trained for 10 iteratio
on increasing lengths of training data, using the weights from the previous lengt
a seed. Performance was then measured on the test data using the weights at t
of the final training iteration. For 512 taps, a separation of over 11 dB was obta
using approximately 1 s of data. Thus, very little data is needed to achieve go
separation. For 1024 taps, a separation of better than 12 dB is consistently m
tained, but it takes 5 s of training data to achieve this level.

Figure 2. Test set performance during on-line adaptation on training set for various forge
factors. Other parameters areη = 0.05 andNtaps = 256.
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5  CONCLUSIONS

The present work is an extension of our previous work on the blind decorr
tion of non-stationary signals. However, it differs significantly in two importa
respects: the use of the coherence function and its corresponding normaliza
and the independent estimates of the output-output and input-output cross p
spectral densities. The combination of these two improvements results in very
convergence. However, because the BSS literature typically reports steady-
rather than convergence performance, and due to a lack of standardized data
we cannot claim that the algorithm is faster than all others. Nevertheless, the
computational complexity and fast convergence clearly shows that it is suitable
real-time operation. In addition, the potential remains for improving performan
through adaptation of the learning rate and/or forgetting factor, particularly as
latter parameter relates to the rate-of-change of stationarity. We also plan to s
the permutation and scaling problem as it relates to the details of the algorithm

Figure 3. Test set performance after off-line training as a function of training data length
various filter lengths. Other parameters areη = 0.025 andγ = 0.5.
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