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Abstract

In hyperspectral imagery one pixel typically consists of a mixture
of the re
ectance spectra of several materials, where the mixture
coe�cients correspond to the abundances of the constituting ma-
terials. We assume linear combinations of re
ectance spectra with
some additive normal sensor noise and derive a probabilistic MAP
framework for analyzing hyperspectral data. As the material re-

ectance characteristics are not know a priori, we face the problem
of unsupervised linear unmixing. The incorporation of di�erent
prior information (e.g. positivity and normalization of the abun-
dances) naturally leads to a family of interesting algorithms, for
example in the noise-free case yielding an algorithm that can be
understood as constrained independent component analysis (ICA).
Simulations underline the usefulness of our theory.

1 Introduction

Current hyperspectral remote sensing technology can form images of ground surface
re
ectance at a few hundred wavelengths simultaneously, with wavelengths ranging
from 0.4 to 2.5�m and spatial resolutions of 10-30m. The applications of this
technology include environmental monitoring and mineral exploration and mining.
The bene�t of hyperspectral imagery is that many di�erent objects and terrain
types can be characterized by their spectral signature.

The �rst step in most hyperspectral image analysis systems is to perform a spectral
unmixing to determine the original spectral signals of some set of prime materials.
The basic di�culty is that for a given image pixel the spectral re
ectance patterns
of the surface materials is in general not known a priori. However there are gen-
eral physical and statistical priors which can be exploited to potentially improve
spectral unmixing. In this paper we address the problem of unmixing hyperspectral
imagery through incorporation of physical and statistical priors within an unsuper-
vised Bayesian framework.

We begin by �rst presenting the linear superposition model for the re
ectances
measured. We then discuss the advantages of unsupervised over supervised systems.



We derive a general maximum a posteriori (MAP) framework to �nd the material
spectra and infer the abundances. Interestingly, depending on how the priors are
incorporated, the zero noise case yields (i) a simplex approach or (ii) a constrained
ICA algorithm. Assuming non-zero noise our MAP estimate utilizes a constrained
least squares algorithm. The two latter approaches are new algorithms whereas the
simplex algorithm has been previously suggested for the analysis of hyperspectral
data.

Linear Modeling To a �rst approximation the intensities X (xi�) measured in
each spectral band � = 1; : : : ; L for a given pixel i = 1; : : : ;N are linear combi-
nations of the re
ectance characteristics S (sm�) of the materials m = 1; : : : ;M
present in that area. Possible errors of this approximation and sensor noise are
taken into account by adding a noise term N (ni�). In matrix form this can be
summarized as;

X = AS+N; subject to: A1M = 1L; A � 0; (1)

where matrix A (aim) represents the abundance of material m in the area cor-
responding to pixel i, with positivity and normalization constraints. Note that
ground inclination or a changing viewing angle may cause an overall scale factor for
all bands that varies with the pixels. This can be incorporated in the model by sim-
ply replacing the constraint A1M = 1L with A1M � 1L which does does not a�ect
the discussion in the remainder of the paper. This is clearly a simpli�ed model of
the physical phenomena. For example, with spatially �ne grained mixtures, called
intimate mixtures, multiple re
ectance may causes departures from this �rst or-
der model. Additionally there are a number of inherent spatial variations in real
data, such as inhomogeneous vapor and dust particles in the atmosphere, that will
cause a departure from the linear model in equation (1). Nevertheless, in practical
applications a linear model has produced reasonable results for areal mixtures.

Supervised vs. Unsupervised techniques Supervised spectral unmixing re-
lies on the prior knowledge about the re
ectance patterns S of candidate surface
materials, sometimes called endmembers, or expert knowledge and a series of semi-
automatic steps to �nd the constituting materials in a particular scene. Once the
user identi�es a pixel i containing a single material, i.e. aim = 1 for a given m and
i, the corresponding spectral characteristics of that material can be taken directly
from the observations, i.e., sm� = xi� [5]. Given knowledge about the endmembers
one can simply �nd the abundances by solving a constrained least squares problem.
The problem with such supervised techniques is that �nding the correct S may
require substantial user interaction and the result may be error prone, as a pixel
can be misinterpreted to represent a pure endmember while it actually contains a
mixture. Another approach obtains endmembers directly form a database. This is
also problematic because the actual surface material on the ground may not match
the database entries, due to atmospheric absorption or other noise sources. Find-
ing close matches is an ambiguous process as some endmembers have very similar
re
ectance characteristics and may match several entries in the database.

Unsupervised unmixing, in contrast, tries to identify the endmembers and mixtures
directly form the observed data X without any user interaction. There are a variety
of such approaches. In one approach a simplex is �t to the data distribution [7, 4, 2].
The resulting vertex points of the simplex represent the desired endmembers, but
this technique is very sensitive to noise as a few boundary points can potentially
change the location of the simplex vertex points considerably. Another approach by
Szu [8] tries to �nd abundances that have the highest entropy subject to constraints
that the amount of materials is as evenly distributed as possible { an assumption



which is clearly not valid in many actual surface material distributions. A relatively
new approach considers modeling the statistical information across wavelength as
statistically independent AR processes [1]. This leads directly to the contextual
linear ICA algorithm [6]. However, the approach in [1] does not take into account
constraints on the abundances, noise, or prior information. Most importantly, the
method [1] can only integrate information from a small number of pixels at a time
(same as the number of endmembers). Typically however we will have only a few
endmembers but many thousand pixels.

2 The Maximum A Posterior Framework

2.1 A probabilistic model of unsupervised spectral unmixing

Our model has observations or data X and hidden variables A, S, and N that
are explained by the noisy linear model (1). We estimate the values of the hidden
variables by using MAP

p(A;SjX) =
p(XjA;S)p(A;S)

p(X)
=

pn(XjA;S)pa(A)ps(S)

p(X)
(2)

with pa(A), ps(S), pn(N) as the a priori assumptions of the distributions. With
MAP we estimate the most probable values for given priors after observing the data,

AMAP;SMAP = argmax
A;S

p(A;SjX) (3)

Note that for maximization the constant factor p(X) can be ignored. Our �rst as-
sumption, which is indicated in equation (2) is that the abundances are independent
of the re
ectance spectra as their origins are completely unrelated: (A0) A and S
are independent.

The MAP algorithm is entirely de�ned by the choices of priors that are guided by
the problem of hyperspectral unmixing: (A1) A represent probabilities for each
pixel i. (A2) S are independent for di�erent material m. (A3) N are normal i.i.d.
for all i; �. In summary, our MAP framework includes the assumptions A0-A3.

2.2 Including Priors

Priors on the abundances Positivity and normalization of the abundances can
be represented as,

pa(A) = �(A1M � 1N )�(A); (4)

where �() represent the Kronecker delta function and �() the step function. With
this choice a point not satisfying the constraint will have zero a posteriori probabil-
ity. This prior introduces no particular bias of the solutions other then abundance
constraints. It does however assume the abundances of di�erent pixels to be inde-
pendent.

Prior on spectra Usually we �nd systematic trends in the spectra that cause
signi�cant correlation. However such an overall trend can be subtracted and/or
�ltered from the data leaving only independent signals that encode the variation
from that overall trend. For example one can capture the conditional dependency
structure with a linear auto-regressive (AR) model and analyze the resulting \inno-
vations" or prediction errors [3]. In our model we assume that the spectra represent
independent instances of an AR process having a white innovation process em� dis-
tributed according to pe(e). With a Toepliz matrix T of the AR coe�cients we can



write, em = smT. The AR coe�cients can be found in a preprocessing step on the
observations X. If S now represents the innovation process itself, our prior can be
represented as,

pe(S) / pe(ST) =

MY
m=1

LY
�=1

pe(

LX
�0=1

sm�0t��0) ; (5)

Additionally pe(e) is parameterized by a mean and scale parameter and potentially
parameters determining the higher moments of the distributions. For brevity we
ignore the details of the parameterization in this paper.

Prior on the noise As outlined in the introduction there are a number of prob-
lems that can cause the linear model X = AS to be inaccurate (e.g. multiple
re
ections, inhomogeneous atmospheric absorption, and detector noise.) As it is
hard to treat all these phenomena explicitly, we suggest to pool them into one noise
variable that we assume for simplicity to be normal distributed with a wavelength
dependent noise variance ��,

p(XjA;S) = pn(N) = N (X�AS;�) =
LY

�=1

N (x� �As�; ��I) ; (6)

whereN (�; �) represents a zero mean Gaussian distribution, and I the identity matrix
indicating the independent noise at each pixel.

2.3 MAP Solution for Zero Noise Case

Let us consider the noise-free case. Although this simpli�cation may be inaccurate it
will allow us to greatly reduce the number of free hidden variables - from NM+ML
toM2. In the noise-free case the variablesA;S are then deterministically dependent
on each other through a NL-dimensional �-distribution, pn(XjAS) = �(X �AS).
We can remove one of these variables from our discussion by integrating (2). It is
instructive to �rst consider removing A

p(SjX) /

Z
dA �(X �AS)pa(A)ps(S) = jS�1jpa(XS

�1)ps(S): (7)

We omit tedious details and assume L = M and invertible S so that we can perform
the variable substitution that introduces the Jacobian determinant jS�1j. Let us
consider the in
uence of the di�erent terms. The Jacobian determinant measures
the volume spanned by the endmembers S. Maximizing its inverse will therefore try
to shrink the simplex spanned by S. The term pa(XS

�1) should guarantee that all
data points map into the inside of the simplex, since the term should contribute zero
or low probability for points that violate the constraint. Note that these two terms,
in principle, de�ne the same objective as the simplex envelope �tting algorithms
previously mentioned [2].
In the present work we are more interested in the algorithm that results from
removing S and �nding the MAP estimate of A. We obtain (cf. Eq.(7))

p(AjX) /

Z
dS �(X�AS)pa(A)ps(S) = jA�1jps(A

�1X)pa(A): (8)

For now we assumed N = M .1 If ps(S) factors over m, i.e. endmembers are inde-
pendent, maximizing the �rst two terms represents the ICA algorithm. However,

1In practice more frequently we have N > M . In that case the observations X can be
mapped into a M dimensional subspace using the singular value decomposition (SVD),

X = UDVT . The discussion applies then to the reduced observations ~X = UTMX with
UM being the �rst M columns of U.



the prior on A will restrict the solutions to satisfy the abundance constraints and
bias the result depending on the detailed choice of pa(A), so we are led to con-
strained ICA.
In summary, depending on which variable we integrate out we obtain two methods
for solving the spectral unmixing problem, one known technique, simplex �tting,
and a new constrained ICA algorithm.

2.4 MAP Solution for the Noisy Case

Combining the choices for the priors made in section 2.2 - Eqs.(4), (5) and (6)- with
(2) and (3) we obtain

AMAP;SMAP = argmax
A;S

LY
�=q

(
NY
i=1

N (xi� � ais�; ��)
MY
m=1

pe(
LX

�0=1

sm�0t��0)

)
; (9)

subject to A1M = 1L;A � 0. The logarithm of the cost function in (9) is denoted
by L = L(A;S). Its gradient with respect to the hidden variables is

@L

@sm
= �ATnm diag(�)�1 � fs(sm) (10)

where N = X�AS, nm are the M column vectors of N, fs(s) = �@ ln pe(s)
@s

. In (10)
fs is applied to each element of sm.
The optimization with respect to A for given S can be implemented as a standard
weighted least squares (LS) problem with a linear constraint and positivity bounds.
Since the constraints apply for every pixel independently one can solve N separate
constrained LS problems ofM unknowns each. We alternate between gradient steps
for S and explicit solutions for A until convergence. Any additional parameters of
pe(e) such as scale and mean may be obtained in a maximum likelihood (ML) sense
by maximizing L. Note that the nonlinear optimization is not subject to constraints;
the constraints apply only in the quadratic optimization.

3 Experiments

3.1 Zero Noise Case: Arti�cial Mixtures

In our �rst experiment we use mineral data from the United States Geological Sur-
vey (USGS)2 to build arti�cial mixtures for evaluating our unsupervised unmixing
framework. Three target endmembers where chosen (Almandine WS479, Montmo-
rillonite+Illi CM42 and Dickite NMNH106242). A spectral scene of 100 samples was
constructed by creating a random mixture of the three minerals. Of the 100 sam-
ples, there were no pure samples (i.e. no mineral had more than a 80% abundance
in any sample). Figure 1A is the spectra of the end memebers recovered by the
constrained ICA technique of section 2.3, where the constraints were implemented
with penalty terms added to the conventional maximum likelihood ICA algorithm.
These are nearly identical to the spectra of the true endmembers, shown in �g-
ure 1B, which were used for mixing. Interesting to note is the scatter-plot of the
100 samples across two bands. The open circles are the absorption values at these
two bands for endmembers found by the MAP technique. Given that each mixed
sample consists of no more than 80% of any endmember, the endmember points
on the scatter-plot are quite distant from the cluster. A simplex �tting technique
would have signi�cant di�culty recovering the endmembers from this clustering.

2see http://speclab.cr.usgs.gov/spectral.lib.456.descript/decript04.html
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Figure 1: Results for noise-free arti�cial mixture. A recovered endmembers using
MAP technique. B \true" target endmembers. C scatter plot of samples across 2
bands showing the absorption of the three endmembers computed by MAP (open
circles).

3.2 Noisy Case: Real Mixtures

To validate the noise model MAP framework of section 2.4 we conducted an ex-
periment using ground truthed USGS data representing real mixtures. We selected
10x10 blocks of pixels from three di�erent regions3 in the AVIRIS data of the
Cuprite, Nevada mining district. We separate these 300 mixed spectra assuming
two endmembers and an AR detrending with 5 AR coe�cients and the MAP tech-
niques of section 2.4. Overall brightness was accounted for as explain in the linear
modeling of section 1. The endmembers are shown in �gure 2A and B in com-
parison to laboratory spectra from the USGS spectral library for these minerals.
Figure 2C shows the corresponding abundances, which match the ground truth;
region (III) mainly consists of Muscovite while regions (I)+(II) contain (areal) mix-
tures of Kaolinite and Muscovite.

4 Discussion

Hyperspectral unmixing is a challenging practical problem for unsupervised learn-
ing. Our probabilistic approach leads to several interesting algorithms: (1) simplex
�tting, (2) constrained ICA and (3) constrained least squares that can e�ciently use
multi-channel information. An important element of our approach is the explicit
use of prior information. Our simulation examples show that we can recover the
endmembers, even in the presence of noise and model uncertainty. The approach
described in this paper yet to exploit local correlations between neighboring pixels
that are well known to exist. Future work will therefore exploit not only spectral
but also spatial prior information for detecting objects and materials.

5 Acknowledgments
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3Regions: (I) coordinate (265,710) and (II) coordinate (275,697) with Kaolinite and
Muscovite 2, (III) coordinate (143,661) with only Muscovite
2 ( ftp://speclab.cr.usgs.gov/pub/cuprite/gregg.thesis.images/plate2.cuprite95.alpha.2u
m.image.wlocals.gif).



180 190 200 210 220

0.3

0.4

0.5

0.6

0.7

0.8

wavelength

Kaolinite

180 190 200 210 220

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Muscovite

wavelength

abundances of Kaolinite

abundances of Muscovite

A B C

Figure 2: A Spectra of computed endmember (solid line) vs Muscovite sample
spectra from the USGS data base library. Note we show only part of the spectrum
since the discriminating features are located only between band 172 and 220. B
Computed endmember (solid line) vs Kaolinite sample spectra from the USGS data
base library. C Abundances for Kaolinite and Muscovite for three regions (lighter
pixels represent higher abundance). Region 1 and region 2 have similar abundances
for Kaolinite and Muscovite, while region 3 contains more Muscovite.
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