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Abstract

We use unsupervised probabilistic machine learning ideas to try to ex-
plain the kinds of learning observed in real neurons, the goal being
to connect abstract principles of self-organisation to known biophysi-
cal processes. For example, we would like to explain Spike Timing-
Dependent Plasticity (see [5,6] and Figure 3A), in terms of information
theory. Starting out, we explore the optimisation of a network sensitiv-
ity measure related to maximising the mutual information between input
spike timings and output spike timings. Our derivations are analogous to
those in ICA, except that the sensitivity of output timings to input tim-
ings is maximised, rather than the sensitivity of output ‘firing rates’ to
inputs. ICA and related approaches have been successful in explaining
the learning of many properties of early visual receptive fields in rate cod-
ing models, and we are hoping for similar gains in understanding of spike
coding in networks, and how this is supported, in principled probabilistic
ways, by cellular biophysical processes. For now, in our initial simula-
tions, we show that our derived rule can learn synaptic weights which can
unmix, or demultiplex, mixed spike trains. That is, it can recover inde-
pendent point processes embedded in distributed correlated input spike
trains, using an adaptive single-layer feedforward spiking network.

1 Maximising Sensitivity.

In this section, we will follow the structure of the ICA derivation [4] in developing the
spiking theory. We cannot claim, as before, that this gives us an information maximisation
algorithm, for reasons that we will delay addressing until Section 3. But for now, to first
develop our approach, we will explore an interim objective function called sensitivity which
we define as the log Jacobian of how input spike timings affect output spike timings.

1.1 How to maximise the effect of one spike timing on another.

Consider a spike in neuron j at time tl that has an effect on the timing of another spike in
neuron i at time tk. The neurons are connected by a weight wij . We use i and j to index
neurons, and k and l to index spikes, but sometimes for convenience we will use spike
indices in place of neuron indices. For example, wkl, the weight between an input spike l
and an output spike k, is naturally understood to be just the corresponding wij .
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Figure 1: Firing time tk is determined by the time of threshold crossing. A change of an
input spike time dtl affects, via a change of the membrane potential du the time of the
output spike by dtk.

In the simplest version of the Spike Response Model [7], spike l has an effect on spike k that
depends on the time-course of the evoked EPSP or IPSP, which we write as Rkl(tk − tl).
In general, this Rkl models both synaptic and dendritic linear responses to an input spike,
and thus models synapse type and location. For learning, we need only consider the value
of this function when an output spike, k, occurs.

In this model, depicted in Figure 1, a neuron adds up its spiking inputs until its mem-
brane potential, ui(t), reaches threshold at time tk. This threshold we will often, again for
convenience, write as uk ≡ ui(tk, {tl}), and it is given by a sum over spikes l:

uk =
∑

l

wklRkl(tk − tl) . (1)

To maximise timing sensitivity, we need to determine the effect of a small change in the
input firing time tl on the output firing time tk. (A related problem is tackled in [2].) When
tl is changed by a small amount dtl the membrane potential will change as a result. This
change in the membrane potential leads to a change in the time of threshold crossing dtk.
The contribution to the membrane potential, du, due to dtl is (∂uk/∂tl)dtl, and the change
in du corresponding to a change dtk is (∂uk/∂tk)dtk. We can relate these two effects
by noting that the total change of the membrane potential du has to vanish because uk is
defined as the potential at threshold. ie:

du =
∂uk

∂tk
dtk +

∂uk

∂tl
dtl = 0 . (2)

This is the total differential of the function uk = u(tk, {tl}), and is a special case of the
implicit function theorem. Rearranging this:

dtk
dtl

= −
∂uk

∂tl

/
∂uk

∂tk
= −wklṘkl/u̇k . (3)

Now, to connect with the standard ICA derivation [4], recall the ‘rate’ (or sigmoidal) neu-
ron, for which yi = gi(ui) and ui =

∑
j wijxj . For this neuron, the output dependence on



input is ∂yi/∂xj = wijg
′

i while the learning gradient is:

∂

∂wij

log

∣∣∣∣
∂yi

∂xj

∣∣∣∣ =
1

wij

− fi(ui)xj (4)

where the ‘score functions’, fi, are defined in terms of a density estimate on the summed
inputs: fi(ui) = ∂

∂ui

log g′i = ∂
∂ui

log p̂(ui).

The analogous learning gradient for the spiking case, from (3), is:

∂

∂wij

log

∣∣∣∣
dtk
dtl

∣∣∣∣ =
1

wij

−

∑
a j(a)Ṙka

u̇k

. (5)

where j(a) = 1 if spike a came from neuron j, and 0 otherwise.

Comparing the two cases in (4) and (5), we see that the input variable xj has become
the temporal derivative of the sum of the EPSPs coming from synapse j, and the output
variable (or score function) fi(ui) has become u̇−1

k , the inverse of the temporal derivative
of the membrane potential at threshold. It is intriguing (A) to see this quantity appear as
analogous to the score function in the ICA likelihood model, and, (B) to speculate that
experiments could show that this‘ voltage slope at threshold’ is a hidden factor in STDP
data, explaining some of the scatter in Figure 3A. In other words, an STDP datapoint should
lie on a 2-surface in a 3D space of {∆w, ∆t, u̇k}. Incidentally, u̇k shows up in any
learning rule optimising an objective function involving output spike timings.

1.2 How to maximise the effect of N spike timings on N other ones.

Now we deal with the case of a ‘square’ single-layer feedforward mapping between spike
timings. There can be several input and output neurons, but here we ignore which neurons
are spiking, and just look at how the input timings affect the output timings. This is captured
in a Jacobian matrix of all timing dependencies we call T. The entries of this matrix are
Tkl ≡ ∂tk/∂tl. A multivariate version of the sensitivity measure introduced in the previous
section is the log of the absolute determinant of the timing matrix, ie: log |T|. The full
derivation for the gradient ∇W log |T| is in the Appendix. Here, we again draw out the
analogy between Square ICA [4] and this gradient, as follows. Square ICA with a network
y = g(Wx) is:

∆W ∝ ∇W log |J| = W−1 − f(u)xT (6)
where the Jacobian J has entries ∂yi/∂xj and the score functions are now, fi(u) =

− ∂
∂ui

log p̂(u) for the general likelihood case, with p̂(u) =
∏

i g′i being the special case of
ICA. We will now split the gradient in (6) according to the chain rule:

∇W log |J| = [∇J log |J|]⊗ [∇WJ] (7)

=
[
J−T

]
⊗

[
Jkl i(k)

(
j(l)

wkl

− fk(u)xj

)]
. (8)

In this equation, i(k) = δik and j(l) = δjl. The righthand term is a 4-tensor with entries
∂Jkl/∂wij , and ⊗ is defined as A⊗Bij =

∑
kl AklBklij . We write the gradient this way

to preserve, in the second term, the independent structure of the 1 → 1 gradient term in
(4), and to separate a difficult derivation into two easy parts. The structure of (8) holds up
when we move to the spiking case, giving:

∇W log |T| = [∇T log |T|]⊗ [∇WT] (9)

=
[
T−T

]
⊗

[
Tkl i(k)

(
j(l)

wkl

−

∑
a j(a)Ṙka

u̇k

)]
(10)



where i(k) is now defined as being 1 if spike k occured in neuron i, and 0 otherwise. j(l)
and j(a) are analogously defined.

Because the T matrix is much bigger than the J matrix, and because it’s entries are more
complex, here the similarity ends. When (10) is evaluated for a single weight influencing a
single spike coupling (see the Appendix for the full derivation), it yields:

∆wkl ∝
∂ log |T|

∂wkl

=
Tkl

wkl

([
T−1

]
lk
− 1
)

, (11)

This is a non-local update involving a matrix inverse at each step. In the ICA case of (6),
such an inverse was removed by the Natural Gradient transform (see [1]), but in the spike
timing case, this has turned out not to be possible, because of the additional asymmetry
introduced into the T matrix (as opposed to the J matrix) by the Ṙkl term in (3).

2 Results.

Nonetheless, this learning rule can be simulated. It requires running the network for a
while to generate spikes (and a corresponding T matrix), and then for each input/output
spike coupling, the corresponding synapse is updated according to (11). When this is done,
and the weights learn, it is clear that something has been sacrificed by ignoring the issue
of which neurons are producing the spikes. Specifically, the network will often put all the
output spikes on one output neuron, with the rates of the others falling to zero. It is happy
to do this, if a large log |T| can thereby be achieved, because we have not included this
‘which neuron’ information in the objective. We will address these and other problems in
Section 3, but now we report on our simulation results on demultiplexing.

2.1 Demultiplexing spike trains.

An interesting possibility in the brain is that ‘patterns’ are embedded in spatially distributed
spike timings that are input to neurons. Several patterns could be embedded in single input
trains. This is called multiplexing. To extract and propagate these patterns, the neurons
must demultiplex these inputs using its threshold nonlinearity. Demultiplexing is the ‘point
process’ analog of the unmixing of independent inputs in ICA. We have been able to ro-
bustly achieve demultiplexing, as we now report.

We simulated a feed-forward network with 3 integrate-and-fire neurons and inputs from 3
presynaptic neurons. Learning followed (11) where we replace the inverse by the pseudo-
inverse computed on the spikes generated during 0.5 s. The pseudo-inverse is necessary
because even though on average, the learning matches number of output spikes to number
of input spikes, the matrix T is still not usually square and so its actual inverse cannot be
taken.

In addition, in these simulations, an additional term is introduced in the learning to make
sure all the output neurons fire with equal probability. This partially counters the ignoral of
the ‘which neuron’ information, which we explained above. Assuming Poisson spike count
ni for the ith output neuron with equal firing rate n̄i it is easy to derive in an approximate
term that will control the spike count,

∑
i(n̄i − ni). The target firing rates n̄i were set to

match the “source” spike train in this example.

The network learns to demultiplex mixed spike trains, as shown in Figure 2. This demulti-
plexing is a robust property of learning using (11) with this new spike-controlling term.

Finally, what about the spike-timing dependendence of the observed learning? Does it
match experimental results? The comparison is made in Figure 3, and the answer is no.
There is a timing-dependent transition between depression and potentiation in our result
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Figure 2: Unmixed spike trains. The input (top lef) are 3 spike trains which are a mixture
of three independent Poison processes (bottom left). The network unmixes the spike train
to approximately recover the original (center left). In this example 19 spikes correspond to
the original with 4 deletion and 2 insertions. The two panels at the right show the mixing
(top) and synaptic weight matrix after training (bottom).

in Figure 3B, but it is not a sharp transition like the experimental result in Figure 3A. In
addition, it does not transition at zero (ie: when tk − tl = 0), but at a time offset by the
rise time of the EPSPs. In earlier experiments, in which we tranformed the gradient in
(11) by an approximate inverse Hessian, to get an approximate Natural Gradient method,
a sharp transition did emerge in simulations. However, the approximate inverse Hessian
was singular, and we had to de-emphasise this result. It does suggest, however, that if the
Natural Gradient transform can be usefully done on some variant of this learning rule, it
may well be what accounts for the sharp transition effect of STDP.

3 Discussion

Although these derivations started out smoothly, the reader possibly shares the authors’
frustration at the approximations involved here. Why isn’t this simple, like ICA? Why
don’t we just have a nice maximum spikelihood model, ie: a density estimation algorithm
for multivariate point processes, as ICA was a model in continuous space? We are going
to be explicit about the problems now, and will propose a direction where the solution may
lie. The over-riding problem is: we are unable to claim that in maximising log |T|, we are
maximising the mutual information between inputs and outputs because:

1. The Invertability Problem. Algorithms such as ICA which maximise log Jacobians can
only be called Infomax algorithms if the network transformation is both deterministic and
invertable. The Spike Response Model is deterministic, but it is not invertable in general.
When not invertable, the key formula (considering here vectors of input and output timings,
tin and tout)is transformed from simple to complex. ie:

p(tout) =
p(tin)

|T|
becomes p(tout) =

∫

solns tin

p(tin)

|T|
d tin (12)

Thus when not invertable, we need to know the Jacobians of all the inputs that could have
caused an output (called here ‘solns’), something we simply don’t know.

2. The ‘Which Neuron’ Problem. Instead of maximising the mutual information
I(tout, tin), we should be maximising I(tiout, tiin), where the vector ti is the timing
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Figure 3: Dependence of synaptic modification on pre/post inter-spike interval. Left (A):
From Froemke & Dan, Nature (2002)]. Dependence of synaptic modification on pre/post
inter-spike interval in cat L2/3 visual cortical pyramidal cells in slice. Naturalistic spike
trains. Each point represents one experiment. Right (B): According to Equation (11).
Each point corresponds to an spike pair between approximately 100 input and 100 output
spikes.

vector, t, with the vector, i, of corresponding neuron indices, concatenated. Thus, ‘who
spiked?’ should be included in the analysis as it is part of the information.

3. The Predictive Information Problem. In ICA, since there was no time involved, we did
not have to worry about mutual informations over time between inputs and outputs. But in
the spiking model, output spikes may well have (predictive) mutual information with future
input spikes, as well as the usual (causal) mutual information with past input spikes. The
former has been entirely missing from our analysis so far.

These temporal and spatial infomation dependencies missing in our analysis so far, are
thrown into a different light by a single empirical observation, which is that Spike Timing-
Dependent Plasticity is not just a feedforward computation like the Spike Response Model.
Specifically, there must be at least a statistical, if not a causal, relation between a real
synapse’s plasticity and its neuron’s output spike timings, for Figure 3B to look like it
does.

It seems we have to confront the need for both a ‘memory’ (or reconstruction) model, such
as the T we have thus far dealt with, in which output spikes talk about past inputs, and a
‘prediction’ model, in which they talk about future inputs. This is most easily understood
from the point of view of Barber & Agakov’s variational Infomax algorithm [3]. They
argue for optimising a lower bound on mutual information, which, for our neurons’, would
be expressed using an inverse model p̂, as follows:

Ĩ(tiin, tiout) = H(tiin)− 〈log p̂(tiin|tiout)〉p(tiin,tiout) ≤ I(tiin, tiout) (13)

In a feedforward model, H(tiin) may be disregarded in taking gradients, leading us to the
optimisation of a ‘memory-prediction’ model p̂(tiin|tiout) related to something suppos-
edly happening in dendrites, somas and at synapses. In trying to guess what this might be,
it would be nice if the math worked out. We need a square Jacobian matrix, T, so that
|T| = p̂(tiin|tiout) can be our memory/prediction model. Now let’s rename our feedfor-
ward timing Jacobian T (‘up the dendritic trees’), as

−→
T , and let’s fantasise that there is

some, as yet unspecified, feedback Jacobian
←−
T (‘down the dendritic trees’), which covers

electrotonic influences as they spread from soma to synapse, and which
−→
T can be com-

bined with by some operation ‘⊗’ to make things square. Imagine further, that doing this
yields a memory/prediction model on the inputs. Then the T we are looking for is

−→
T ⊗
←−
T ,



and the memory-prediction model is: p̂(tiin|tiout) =
∣∣∣−→T ⊗←−T

∣∣∣

Ideally, the entries of
−→
T should be as before, ie:

−→
T kl = ∂tk/∂tl. What should the entries

of
←−
T be? Becoming just one step more concrete, suppose

←−
T had entries

←−
T lk = ∂cl/∂tk,

where cl is some, as yet unspecified, value, or process, occuring at an input synapse when
spike l comes in. What seems clear is that⊗ should combine the correctly tensorised forms
of
−→
T and

←−
T (giving them each 4 indices ijkl), so that T =

−→
T ⊗

←−
T sums over the spikes

k and l to give a I × J matrix, where I is the number of output neurons, and J the number
of input neurons. Then our quantity, T, would represent all dependencies of input neuronal
activity on output activity, summed over spikes.

Further, we imagine that
←−
T contains reverse (feedback) electrotonic transforms from soma

to synapse
←−
R lk that are somehow symmetrically related to the feedforward Spike Re-

sponses from synapse to soma, which we now rename
−→
Rkl. Thinking for a moment in terms

of somatic k and synaptic l, voltages V , currents I and linear cable theory, the synapse to
soma transform,

−→
Rkl would be related to an impedance in Vk = Il

−→
Z kl, while the soma

to synapse transform,
←−
R lk would be related to an admittance in Il = Vk

←−
Y lk [8]. The

symmetry in these equations is that
−→
Z kl is just the inverse conjugate of

←−
Y lk.

Finally, then, what is cl? And what is its relation to the calcium concentration, [Ca2+]l,
at a synapse, when spike l comes in? These questions naturally follow from considering
the experimental data, since it is known that the calcium level at synapses is the critical
integrating factor in determining whether potentiation or depression occurs [5].

4 Appendix: Gradient of log |T| for the full Spike Response Model.

Here we give full details of the gradient for Gerstner’s Spike Response Model [7]. This is
a general model for which Integrate-and-Fire is a special case. In this model the effect of
a presynaptic spike at time tl on the membrane potential at time t is described by a post
synaptic potential or spike response, which may also depend on the time that has passed
since the last output spike tk−1, hence the spike response is written as R(t− tk−1, t− tl).
This response is weighted by the synaptic strength wl. Excitatory or inhibitory synapses are
determined by the sign of wl. Refractoriness is incorporated by adding a hyper-polarizing
contribution (spike-afterpotential) to the membrane potential in response to the last preced-
ing spike η(t − tk−1). The membrane potential as a function of time is therefore given
by

u(t) = η(t− tk−1) +
∑

l

wlR(t− tk−1, t− tl) . (14)

We have ignored here potential contributions from external currents which can easily be in-
cluded without modifying the following derivations. The output firing times tk are defined
as the times for which u(t) reaches firing threshold from below. We consider a dynamic
threshold, ϑ(t − tk−1), which may depend on the time since that last spike tk−1, together
then output spike times are defined implicitly by:

t = tk : u(t) = ϑ(t− tk−1) and
du(t)

dt
> 0 . (15)

For this more general model Tkl is given by

Tkl =
dtk
dtl

= −

(
∂u

∂tk
−

∂ϑ

∂tk

)
−1

∂u

∂tl
=

wklṘ(tk − tk−1, tk − tl, )

u̇(tk)− ϑ̇(tk − tk−1)
, (16)

where Ṙ(s, t), u̇(t), and ϑ̇(t) are derivatives with respect to t. The dependence of Tkl on
tk−1 should be implicitly assumed. It has been omitted to simplify the notation.



Now we compute the derivative of log |T| with respect to wkl. For any matrix T we have
∂ log |T|/∂Tab = [T−1]ba. Therefore:

∂ log |T|

∂wkl

=
∑

ab

∂ log |T|

∂Tab

∂Tab

∂wkl

∑

ab

[T−1]ba

∂Tab

∂wkl

. (17)

Utilising the Kronecker delta δab = (1 if a = b, else 0), the derivative of (16) with respect
to wkl gives:

∂Tab

∂wkl

=
∂

∂wkl

[
wabṘ(ta − ta−1, ta − tb)

η(ta − ta−1) +
∑

c wacṘ(ta − ta−1, ta − tc)− ϑ̇(ta − ta−1)

]

= δakδbl

Ṙ(ta − ta−1, ta − tb)

u̇(ta)− ϑ̇(ta − ta−1)

−
wabṘ(ta − ta−1, ta − tb)δakṘ(ta − ta−1, ta − tl)(

u̇(ta)− ϑ̇(ta − ta−1)
)2

= δakTab

[
δbl

wab

−
Tal

wal

]
. (18)

Therefore:
∂ log |T|

∂wkl

=
∑

ab

[T−1]baδakTab

[
δbl

wab

−
Tal

wal

]
(19)

=
Tkl

wkl

(
[T−1]lk −

∑

b

[T−1]bkTkl

)
=

Tkl

wkl

(
[T−1]lk − 1

)
. (20)
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