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Abstract— Blind sourceseparation(BSS)hasbeenproposed
asa method to analyzemulti-channel electroencephalography
(EEG) data. A basic issuein applying BSS algorithms is the
validity of the independenceassumption. In this paper we
investigatewhether EEG canbeconsidered to bea linear com-
bination of independentsources.Linear BSScan be obtained
under the assumptions of non-Gaussian, non-stationary, or
non-white independent sources. If the linear independence
hypothesisis violated thesethr eediffer ent conditions will not
necessarilylead to the sameresult. We show, using 64 channel
EEG data, that differ ent algorithms which incorporate the
thr ee differ ent assumptions lead to the same results, thus
supporting the linear independencehypothesis.

keywords: Blind source separation(BSS), electroen-
cephalography (EEG), non-Gaussian,non-white, non-
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I . INTRODUCTION

Problematicin electroencephalography(EEG) analysis
is the non-invertibility of the imaging problem, i.e. a
small number of sensorsmeasuresa linear combination
of a multitude of neuronal and non-neuronalsources.
Methodswhich attemptto invert the sensorreadingsand
recover the underlying sourceswill be strongly affected
by the regularizationassumptionsthat are imposed.This
is a well known problem of source reconstructionand
localization in EEG. Recently, alternative methodshave
beenproposedthat circumvent the notion of localization
and sourcereconstructionaltogetherand simply look for
projectionsof the EEG datawith “interesting” properties,
suchasindependence[1], [2], or maximumdiscriminability
betweenexperimentalconditions[3].

For example,blind sourcesseparation(BSS) has been
proposedas a method to find statistically independent
linearprojectionsof themeasuredEEGsignals1. Statistical
independenceis inherently difficult to assess,typically
requiring additional assumptionson the statisticsof the
sources.Therefore,variousBSSalgorithmshave beenused
to extract independentprojections.For instance,Junget al.
[1] assumethat the histogramof a sourcehas long tails
(sparsity),andTanget al. [2] assumethat the sourceshave
a coloredspectrum.Yet otheralgorithmsareavailablethat
assumenon-stationarysources[4] or non-Gaussiansources
[5]. If the linear mixture assumptionis correct,alongwith
the correspondingstatisticalproperties,thenall algorithms
should in principle give the same result. If any of the

1Here, the term “source” shouldnot be taken literally in the senseof
a localizedneuronalsourceof electricalactivity that is observed asskull
surfacepotentialdifferences.The term“source” is simply usedbecauseit
is commonterminologyin thecontext of blind sourceseparation.It should
be interpretedas“component”or projection.Indeed,thereis nothingthat
prevents theseBSS methodsfrom extracting projectionsof the datathat
correspondto extendedor disjoint cortical areas

conditionsis violated, e.g. sparsity, or non-stationarity, it
is not clear that the algorithmswill give the sameresults.
If, furthermore,theassumptionof linearity or independence
is not met it is not clear that any of the methodswill give
even a meaningfulresult, let alonethe sameresult.

In this paper we investigatethe hypothesisthat EEG
can be thought of as linear combinationof independent
sources.We apply three different methodswhich assume
that the sourcesareeithernon-stationary, non-Gaussian,or
non-white.We find that in fact all methodsgive the same
results in supportof the linear independencehypothesis.
Note that this doesnot constitutea formal proof. However,
we point out that in other domainssuch as independent
componentsof imagesthe differentalgorithmsdo not give
the sameprojectionsof the data[4].

In the following we review the conditions for source
separationthatcanbederivedfor non-white,non-stationary,
andnon-Gaussiansources[6]. Theseassumptionsappearto
bewell metby EEGdata:(1) In thecourseof anexperiment
differentareasin the brain becomeactive andthe resulting
EEGactivity changesover time (non-stationary).(2) There
exists oscillatory activity in different bands as well as
slow changesobserved through trial averaging in event
relatedpotentials.Thesehave long beenconsidereddistinct
“components”of the EEG spectrum(non-white). (3) The
changesin magnitudeover time tend to result in non-
Gaussianstatistics[4].

For thesethreeconditionsthe solutionfor the separation
problem is given by the simultaneouslydiagonalization
the covariancematrix of the observations and additional
cross-statisticswhose form dependsupon the particular
assumptions.

I I . BLIND SOURCE SEPARATION BASED ON

INDEPENDENCE

The problem of recovering sourcesfrom their linear
mixtureswithoutknowledgeof themixing processhasbeen
widely studied. In its simplest form it can be expressed
as the problem of identifying the factorizationof the

�
-

dimensionalobservations���	��
 into a mixing channel� and
-dimensionalsources������
 ,

���	��
��������	��
�� (1)

In encephalographythe unknown matrix � representsthe
couplingof a sourcewith eachsensor. Sensorgeometryas
well asthetissuepropertieswill affect its values2. Theterm

2In EEGtherelevantpropertyis impedanceof thetissueandtheprecise
anatomy;in magneto-encephalography(MEG) magneticpermeabilityand
sensorlocationandorientation;in functionalnearinfraredimaging(fNIR)
absorptionand reflectioncoefficients of the tissue.



blind source separation is frequentlyusedto indicatethat
no preciseknowledgeis availableon thechannel� , nor the
sources� ���	��
 . Instead,only generalstatisticalassumptions
on the sourcesor the structureof the channelaremade.A
large body of work exists for the casethatonecanassume
statisticallyindependentsources.Theresultingfactorization
is known as IndependentComponentAnalysis (ICA) [7].
ICA makesno assumptionson thetemporalstructureof the
sources.In this work we alsoconsiderassumptionson the
statisticalstructureof neighboringsamplesin which cases
separationis obtainedalso for decorrelatedsources.

We begin by noting that the matrix � explains various
cross-statisticsof the observations ������
 asan expansionof
the correspondingdiagonalcross-statisticsof the sources������
 . An obvious exampleis the time averagedcovariance
matrix, ������� �"!$# ���	��
%�'&(�	��
*) ,3

�$�(�+���$,-� &/. (2)

where ��, is diagonalif we assumeindependentor decor-
related sources. ��& denotesthe complex transposeof� . In the following section we highlight that for non-
Gaussian,non-stationary, or non-whitesourcesthereexists,
in addition to the covariancematrix, other cross-statistics0 , which have the samediagonalizationproperty, namely,0 �1��� 0 ,-� & � (3)

Note that thesetwo conditionsalone are alreadysuffi-
cient for sourceseparation.To recover thesourcesfrom the
observation ������
 we must find an inversematrix 2 such
that 23&4�5��6 . In this casewe have,

������
���2 & ��������
��+2 & ���	��
�� (4)

After multiplying equations(2) and(3) with 2 andequa-
tion (3) with

0 ,87 � we cancombinethemto obtain,

� � 2 � 0 � 239 (5)

whereby assumption,9/�:�$, 0 , 7 � , is a diagonalmatrix.
This representsa generalizedeigenvalueequationthat fully
determinesthe unmixing matrix 2 & . This of course
assumesnonzero diagonal values for

0 , . Equation (5)
specifies

�
columnvectorscorrespondingto at most

 ��
sources.If � is of rank

<;=�
only thefirst


eigen-

vectorswill representgenuinesourceswhile the remaining�3>=
eigenvectorsspanthe subspaceorthogonalto � .

This formulationcombinesthereforesubspaceanalysisand
separationin onestep.

Incidentally, notethat if we choose,
0 �1�:6 , andassume

insteadan orthogonalmixing, in fact orthonormalif we
set
0 , �36 , the generalizedeigenvalue equationreduces

to a conventional eigenvalue equation.The solutionsare
referredto asthePrincipalComponentsof theobservations� .

In general,however, the mixing � and the solution for2 arenot orthogonal.In thefollowing sectionwe describe

3Theexponent? standfor thehermitiantranspose.Weusethisnotation
to allow complex pair valuesasmeasuredin MEG.

several commonstatisticalassumptionsusedin BSS and
show how they lead to different diagonal cross-statistics0

.

I I I . STATISTICAL ASSUMPTIONS AND THE FORM OF Q

The independenceassumptiongives a set of conditions
on the statisticsof recoveredsources.All cross-moments
of independentvariablesfactor, i.e.

!$# @BACD�	��
�@BEF ���'GIHJ
*)K�:!$# @BACD�	��
*)L!$# @NMOEF �	�KGIHJ
*) .QPSR�UT . (6)

where !�#V�W) representsthe mathematicalexpectation.With
(4) theseequationsdefine for eachchoice of XZY .�[D.�\]. H�^
a set of conditions on the coefficients of 2 and the
observable statistics of ������
 . With a sufficient number
of such conditions the unknown parametersof 2 can
be identified.4 Dependingon the choice this implies that
in addition to independencethe sourcesare assumedto
be either non-stationary, non-white, or non-Gaussian as
discussedin the next threesections.

A. Non-stationary Sources

First, considersecondorder statistics, Y_G [ �a` , and
non-stationarysources.The covarianceof the observations
varieswith the time � ,

� � ����
���!$# ������
%� & �	��
*)
����!$# ������
W� & ����
*)L� & ����� , ����
�� & � (7)

Without restrictionwe assumezeromeansignals.For ze-
ro meansignalsequation(6) impliesthat �$,b����
 is diagonal.
Therefore,� is a transformationthatexpandsthe diagonal
covarianceof thesourcesinto theobservedcovarianceat all
times.In particular, thesumover time leadsto equations(2)
regardlessof stationaritypropertiesof the signals.Setting,0(c �:� � ����
 , for any time � , or linearcombinationof times,
will give the diagonalcross-statistics(3) requiredfor the
generalizedeigenvalueequation(5).

More generally, equation (7) specifies for each � a
set of

� � �d>=e 
Ofg` conditionson the
�h

unknowns in
the matrix � . The unmixing matrix can be identified by
simultaneouslydiagonalizingmultiple covariancematrices
estimatedover different stationarity times. In the square
case,

� �  , when using the generalizedeigenvalue
formulation,the

� �
parametersarecritically determinedby

the
� �

conditionsin (5). To avoid the resultingsensitivity
to estimationerrorsin thecovariances�$������
 it is beneficial
to simultaneouslydiagonalizemorethantwo matrices.This
is discussedin detail in [8].

B. Non-White Sources

For non-whitesources(non-zeroautocorrelation)onecan
usesecondorderstatisticsin the form of cross-correlations
for different time lags H :
� � �	HJ
���!�# ���	��
%� & ���iGIHJ
*)

����!$# ���	��
W� & �	�'GIHJ
*)L� & ����� , �	jk
W� & � (8)

4Note however in (4) that any scalingand permutationthat is applied
to thecoordinatesof l canbecompensatedby applyingthe inversescales
and permutationsto the rows of m . Conditions(6) do not resolve that
ambiguity.



Herewe assumethat the signalsarestationarysuchthat
the estimation is independentof � , or equivalently, that
then expectation !$#8�W) includesa time average.Again, (6)
implies that �$,b�	HJ
 is diagonal with the auto-correlation
coefficients for lag H on its diagonal. Equation (8) has
the same structure as (3) giving us for any choice ofH , or linear combinationsthereof, the required diagonal
cross-statistics,

0 � �o� � �	HJ
 , to obtain the generalized
eigenvaluesolution.The identificationof mixing channels
usingeigenvalueequationswasfirst proposedfor simulta-
neousdiagonalizationof cross-correlations[9]. Time lags H
provide new informationif the sourcesignalshave distinct
auto-correlations.Simultaneousdiagonalizationfor more
than two lags hasbeenpreviously presented,for example
in [10].

C. Non-Gaussian Sources

For stationaryandwhite sourcesdifferent � and H do not
provide any new information.In that case(6) reducesto,

!$# @ ACp@ EF )��:!$# @ ACg)q!�# @ MOEF ) .rPSR�UTs� (9)

To obtain sufficient conditionsone must include more
than secondorder statistics of the data ( YtGvu wx` ).
Consider for example 4th order cumulantsexpressedin
termsof 4th ordermoments:y Yzu{�|@ C . @ MF . @N} . @ M~ 
���!�# @ C @ MF @N}�@ M~ ) > !$# @ C @ MF )q!�# @N}�@ M~ )> !$# @ C @B}N)q!$# @bMF @bM~ ) > !$# @ C @bM~ )L!$# @bMF @N}B)��

(10)

For Gaussiandistributions all 4th order cumulants(10)
vanish [11]. In the following we assumenon-zerodiag-
onal terms and require therefore non-Gaussiansources.
It is straightforward to show using (9) that for inde-
pendentvariablesthe off-diagonal terms vanish, P+R��T :y YDu��k@ C . @ MF . @N} . @ M~ 
���� , for any � . j , i.e. the 4th order
cumulantsare diagonal in P�. T for given � . j . Any linear
combination of these diagonal terms is also diagonal.
Following the discussionin [5] we define such a linear
combinationwith coefficients, ����XZu ~ } ^ ,

� C F �|��
���� } ~
y YDu��k@ C . @ MF . @N} . @ M~ 
%u ~ }�� (11)

With equation(10) andcovariance,�$,S�+!$# �B�Z&s) , onecan
write in matrix notation:� ,b�	�v
���!$# � & �����Z� & ) > �$,-�������V���|���$,-
> !$# �Z�B��)L���i!$# �bMV� & ) > ��,����$,i� (12)

We have addedthe index � to differentiatefrom an equiv-
alentdefinition for the observations � . Using the identity 6
this reads:� �K�|68
��:!$# � & ���K� & ) > �$�"�i���g�8���	�$��
> !$# �K� � )L!$# � M � & ) > �$�"�$��� (13)

By inserting(1) into (13) it is easyto seethat,� �K�	68
��:� � ,b�|� & ��
�� & � (14)

Since
� ,b�	��
 is diagonalfor any � , it is also diagonal

for � ����&4� . We find thereforethat � expandsthe
diagonal fourth order statistic to give the corresponding
observablefourth orderstatistic

0 ���	6Z
 . This againgivesus
therequireddiagonalcross-statistics(3) for thegeneralized
eigenvalue decomposition.This methodis instructive but
verysensitive to estimationerrorsandthespreadof kurtosis
of the individual sources.For robust estimationsimulta-
neousdiagonalizationusingmultiple �v@ is recommended
[5].

IV. RESULTS

Results for real mixtures of EEG signals are shown
in figure 1. This data was collectedas part of an error-
relatednegativity (ERN) experiment(for details see[3]).
To obtain robust estimatesof the source directions we
simultaneouslydiagonalizedfiveor morecross-statisticsfor
a given conditionsusing the diagonalizationalgorithm by
Cardosoand Souloumiac[12]. A segmentof ��� � seconds
of datataken from approximately200 trials wasusedasa
window beforeand after a visual stimuluswas presented.
We recover only the 8 strongestcomponentsby setting � � . The result is shown in figure 1. First note
that for eachof the threedifferent statisticalassumptions
nearly identical sourcesare recovered, as evidenced by
the similarity in the scalpplots (columnsin � ) and trial
averagedtime courseof ������
 . This is true for the datafrom
7 differentsubjects.

The spatial distribution and time course of the first
componentindicate a motor activity and somatosensory
response.This is distributed over the motor cortex bilat-
erally, assubjectsrespondin this experimentwith left and
right handbutton press.It is strongestat about300-400ms
afterstimulusonset,which correspondsto the approximate
responsetime of this subject.The secondcomponent(oc-
cipital) representsthe responseto the visual stimulus.The
fourth componenthasa fronto-centralactivity distribution
indicative of the hypothesizedorigin of the ERN in the
anteriorcingulate[13]. The remainingcomponentsremain
openfor interpretation.

V. CONCLUSION

In this paper we investigatedwhether EEG can be
seenas a linear combinationof independentcomponents.
If this assumptionis not valid the different algorithms
presentedfor extracting independentcomponentswill not
give the sameresults.The EEG componentswe obtainare
consistentwith the linear independencehypothesis,andthe
correspondingassumptionsthat thesecomponentsarenon-
stationary, non-white,andnon-Gaussian.This suggeststhat
BSS is an appropriatemethodfor analysisof EEG data.
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Fig. 1. EEG sensorprojectionsusing the differentassumptionsof non-white(NW), non-stationary(NS) andnon-Gaussian(NG) sources.Top three
rows show the coupling coefficients (i-th column in � ). The bottom three rows show the stimulus locked trail average(solid line) and standard
deviation (shadedarea)for the recoveredcomponentslV�¡ 	¢ . Dotted line indicatesvisual stimulusonset.
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