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Frequency-invariant beamforming aims to parameterize array filter coefficients such that the
spectral and spatial response profiles of the array can be adjusted independently. Solutions to this
problem have been presented for specific sensor configurations often requiring a larger number of
sensors. However, in practical applications, the number and location of sensors are often restricted.
This paper proposes to find an optimal linear basis transformation that decouples the frequency
response from the spatial response. A least-squares optimal basis transform can be computed
numerically for arbitrary sensor configurations, for which typically no exact analytical solutions are
available. This transform can be further combined with a spherical harmonics basis resulting in
readily steerable broadband beams. This solution to broadband beamforming effectively decouples
the array geometry from the steering geometry. Furthermore, for frequency-invariant beams, this
approach results in a significant reduction in the number of beam-design parameters. Here, the
method is demonstrated for an optimal design of far-field response for an irregular linear array with
as few as three sensors. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2197606�

PACS number�s�: 43.60.Fg �EJS� Pages: 3839–3847
I. INTRODUCTION

An array of spatially distributed sensors can be made
selective in space and frequency by filtering and summing
the output of multiple sensors. For a fixed geometry, the
spectro-spatial response profile is determined by the filter
coefficients. Changing a given coefficient will typically af-
fect both the frequency as well as the spatial response profile.
This spectro-spatial coupling complicates broadband filter
design as well as adaptive beamforming algorithms. The goal
of this work is to find a parameterization of the filter coeffi-
cients that decouples the spatial selectivity from the fre-
quency selectivity for arbitrary array configurations. Once
decoupled, a frequency-invariant response is obtained by
choosing the same coefficients for multiple frequencies. This
simplifies broadband beamforming as the frequency response
and the spatial profile can be adjusted independently.

Broadband and frequency-invariant beamforming has
been addressed by Ward et al.,1 covering far-field problems,
and Abhayapala et al.2 and Kennedy et al.3 for near-field
problems. Their approach is based on the spatial Fourier
transform of a continuous aperture. In practical implementa-
tions, the aperture needs to be sampled with a discrete num-
ber of sensors. This leads to specific array configurations
typically with a large number of sensors on a linear or rect-
angular lattice.2,4,5 More recent work presents analytic inver-
sion methods for linear,6 cylindrical,7 and spherical arrays.8

Although these array configurations may be optimal in terms
of frequency invariance, reduced aliasing, or spatial resolu-
tion, they may not be practical in some applications. In par-
ticular, speech acquisition with embedded microphones re-
quires broadband arrays often with a very small number of
microphones �two to five� in a constrained spatial arrange-
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ment. This paper presents a numerical approach to construct
an optimal frequency-invariant response for an arbitrarily
chosen array configuration.

Following previous work,8 the resulting frequency-
invariant response is made steerable by combining it with the
spherical harmonics decomposition of the beam pattern.2,9

The required coefficients for rotating spherical harmonics are
given by the Wigner rotation matrix.10 A numerical approach
related to the present method has been considered in the
context of near-field design but has not been fully
developed.3 A related technique has been presented for arbi-
trarily placed sensors on a sphere but without addressing
frequency invariance.11

The paper is organized as follows: Secs. II and III intro-
duce the notation and define the goal of frequency-invariant
beamforming. Sections IV and V present existing solutions
based on analytic expansions of plane waves and the corre-
sponding inversion formulas. The numerical least-squares
approach proposed in this work is presented in Sec. VI.
Beam steering is discussed in Sec. VII giving some special
considerations to the linear array. Section VIII discusses sen-
sor noise and the resulting regularization of the least-squares
solution. Section IX explains how the proposed basis trans-
formation can be used to make existing adaptive beamform-
ing algorithms frequency invariant. Finally, examples are
presented using data-independent beam design for a linear
array. The paper closes with a discussion on how the pro-
posed method can be applied to other array configurations,
directional sensors, and near-field beam design. To better fol-
low the main argument, the reader may skip Secs. IV, V,
VII A, and VIII in a first reading.

II. ARRAY RESPONSE

This section defines some terminology commonly used
with sensor arrays and beam forming. Denote the signal

sampled by the nth sensor at time t as xn�t�. A beamformer
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convolves the N sensor signals with the corresponding filter
coefficients cn�t� and sums the result to generate an array
output signal:

y�t� = �
n=1

N

cn�t� � xn�t� . �1�

The convolution is denoted here with the symbol �.
For far-field design, it is customary to discuss the effect

of this processing by considering the signals produced by a
planar wave impinging on the sensors. Assume a steady-state
plane wave with radial frequency � traveling in direction
�= �� ,��, where spherical angles � and � represent eleva-
tion and azimuth, respectively. Orientation and frequency
can also be specified in Cartesian coordinates as a three-
vector k pointing in direction � with k= �k� characterizing
the wavenumber k=� /c. Because of the simple linear rela-
tionship, the wavenumber k will also be referred to as “fre-
quency” in this paper. The plane wave elicits, at location rn,
a pressure signal:9

xn�t� = ei�k·rn−�t�, �2�

with i2=−1. To obtain the angle-dependent frequency re-
sponse, consider the temporal Fourier transform F of this
pressure signal:

xn��� = F�xn�t�� = 2���� − ��eik·rn. �3�

This is the response of the sensors to the plane wave which
defines the sensor response gn�k�:

gn�k� = eik·rn. �4�

The �-function expresses the monochromatic nature of the
plane wave, and is typically omitted to facilitate a more com-
pact notation.9 Similarly, the Fourier transform of the result-
ing response of the filter and sum:

y��� = F�y�t�� = 2���� − ��f�k� , �5�

leads to the definition of the filter-array response f�k�:

f�k� = �
n=1

N

cn�k�gn�k� . �6�

III. FREQUENCY-INVARIANT BEAMFORMING

Now consider Eq. �6� with k rewritten in terms of the
arrival direction � and frequency k,

f�k,�� = �
n=1

N

cn�k�gn�k,�� . �7�

This equation can be seen as a parameterization of the
filter-array response for each frequency k with coefficients
cn�k�, and basis functions gn�k ,��. Modifying coefficients
cn�k� will affect the frequency and spatial response simulta-
neously because gn�k ,�� depends on both the frequency k
and arrival direction �. The goal of frequency-invariant

beamforming is to find a new parameterization for cn�k�:
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cn�k� = �
l=1

L

bnl�k�c̃l�k� , �8�

such that the basis transform bnl�k� converts the array re-
sponse into a frequency-invariant array response,

�
n=1

N

gn�k,��bnl�k� = g̃l��� . �9�

The basis transform replaces the N sensors indexed by n
by a new set of L virtual sensors indexed by l. These virtual
sensors are now frequency invariant. This basis transform, in
turn, factorizes the filter-array response, which is seen by
combining Eqs. �7�–�9�:

f�k,�� = �
l=1

L

c̃l�k�g̃l��� . �10�

By comparing Eq. �10� with Eq. �7�, it becomes clear
that modifying the new parameters c̃l�k� will affect the spa-
tial response profile f�k ,�� only at frequency k. In fact, the
spatial response profile of the filter array is fully determined
by coefficients c̃l�k�. In particular, a frequency-invariant
beamformer is obtained by choosing the same coefficients
for all frequencies, c̃l�k�= c̃l.

The challenge of uncoupling the spatial from the spec-
tral response lies in finding a basis transform bnl�k� that sat-
isfies Eq. �9�—even if only approximately.

IV. ARRAY RESPONSE FOR VARIOUS GEOMETRIES

To understand existing analytic solutions to this prob-
lem, it will be useful to express the sensor response �Eq. �4��
in terms of the arrival direction �. The plane wave response
of a sensor located at rn= �rn� ,�n�� can be expanded10,9 as

gn�k,�� = 4��
l=0

�

iljl�krn�� �
m=−l

l

Yl
m���Yl

m*��n�� , �11�

where jl�kr� are spherical Bessel functions of the first kind,
and Yl

m��� are spherical harmonics. The response of a
spherical array is given by Eq. �11� with rn�=r�. For a hori-
zontally placed circular array with �n�=� /2, and restricting
to the horizon as arrival direction �=� /2, Eq. �11� becomes7

gn�k,�� = �
l=−�

�

ilJl�kr��eil��−�n��, �12�

where Jl�kr� are Bessel functions of the first kind. In a ver-
tically aligned linear array with �n�=0, Eq. �11� becomes
independent of �, and is therefore symmetric about the array
axis:6

gn�k,�� = e−ikrn� cos �. �13�

V. ANALYTIC INVERSION APPROACHES

Let us now consider existing analytic solutions to the
factorization problem �9�. A general theory for continuous
apertures has been proposed1 with corresponding approxima-

1,5
tions for discrete arrays. Some specific array configura-
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tions make use of elegant analytic inversion formulas, as in
the case of spherical,8 hemispherical,12 circular,13,7 linear,6

and rectangular4 arrays. Equations �11�–�13� were presented
to give an indication of possible approaches. To give an idea
of these methods, consider the case of a circular array. For a
circular array, one may choose:

bnl�k� = N−1i−lJl
−1�kr�eil�n. �14�

Inserting Eqs. �14� and �12� into Eq. �9� will indeed give
a frequency-invariant function of space, g̃l���=e−il�, assum-
ing that the following orthogonality condition holds for any
l ,m:

1

N
�
n=1

N

ei�m−l��n = �ml. �15�

Unfortunately, this is only correct for 	l		N, and only if
the N sensors are placed on an equidistant lattice along the
circular array. As a result, Eq. �9� is only approximately cor-
rect. For circular, as well as spherical, arrays the approxima-
tion can only be improved with a larger number of sensors,
while the lattice must be carefully arranged to match the
analytic inversion formulas.13,8 The same is true for linear
and rectangular arrays.1,5 In addition, for those configura-
tions, the angular response profile at any given frequency
only partially determines the required spatial Fourier basis
coefficients.6 Arbitrary Fourier coefficients have to be chosen
outside of the determined range, further compromising the
accuracy of the approximations.

VI. LEAST-SQUARES SOLUTION

The goal of this work is to directly minimize the ap-
proximation error resulting from the restricted number of
sensors, and to overcome the restrictions on sensor locations
imposed by analytic inversions. The proposed solution is to
invert Eq. �9� numerically. To this end, discretize the arrival
directions with angles �q, q=1, . . . ,Q, and write Eq. �9� in
matrix notation

G�k�B�k� = G̃ , �16�

where �G�k��qn=gn�k ,�q�, �B�k��nl=bnl�k�, and �G̃�ql

= g̃l��q�. The new desired spatial basis vectors can be de-

fined in the columns of G̃�k�, while G�k� is determined by
the array configuration. For each frequency, k, Eq. �16�
specifies LQ conditions with LN unknowns. Typically, only
a few sensors are available; yet one would like to parameter-
ize the response for many different arrival directions. There-
fore, with Q
N, the problem is overdetermined. The least-
squares solution to this problem �i.e., the B that will
reproduce G with the smallest square error� is computed with
the pseudo-inverse, G†= �GHG�−1GH,

B�k� = G†�k�G̃ . �17�

This requires that G is of full rank—a condition that has
to be verified in practice. Note that the discretization of the
arrival directions is only used to compute the basis transform
bnl�k�. When applying the new basis, the arrival direction can

take on any arbitrary values. For a given array geometry, the
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basis transform is computed once for each frequency, k, and
remains unaltered by subsequent beam design.

The accuracy of the proposed method depends on how

well G can be inverted, that is, how well can G̃ be repre-

sented by B :�= �GB−G̃�2= �GG†G̃−G̃�2. This is the mini-
mum attainable square error in satisfying the factorization
condition �9� for a specific set of angles �q. Any other basis
transform is suboptimal �in the least-squares sense�.

Uniform sampling of angles � gives equal weight to the
optimality criteria �. Nonuniform sampling will place a big-
ger weight on the areas in angular space that are sampled
more densely. To avoid large errors for intermediate angles
that have not been sampled, one should choose band-limited

basis functions G̃. Spherical harmonics represent such a ba-
sis and will be presented next.

VII. BEAM STEERING

Ideally, the new spatial basis, g̃l���, should be easily
steerable. This means that the overall orientation of a beam
can be rotated without changing its spatial profile, i.e., with-
out changing coefficient c̃l�k�. This implies that after rotation
of the frame of reference, the basis can be expressed in terms
of the same basis. The basis of spherical harmonics satisfies
this property;

Yl
m����� = �

m=−l

l

Dmm�
l ��,,��Yl

m��� . �18�

� and �� are the spherical angles before and after the rota-
tion of the frame of reference. The rotation can be specified
by the Euler angles � , ,�, where � is an initial spin about
the original z axis,  changes its elevation, and � is a sub-
sequent change in longitude. Explicit expressions for coeffi-
cients Dmm�

l �� , ,�� were first given by Wigner10,14 and are
variably referred to as Wigner D-functions or Wigner rota-
tion matrix. Efficient algorithms are available to compute
these coefficients from a conventional 3�3 rotation matrix
given in Cartesian coordinates.15

An additional advantage of the spherical harmonics is
their uniform resolution.16 Equation �18� states that any ro-
tated version of the spherical harmonics of order L can be
represented exactly by harmonics of, at most, order L. This
implies that band-limited beam patterns, which do not oscil-
late faster than � /L, can be represented exactly with har-
monics of at most order L.17,18

Thanks to identity �18� the spherical harmonics are
readily steerable and therefore are a natural choice for the
new basis:8

g̃lm��� = Yl
m��� . �19�

The virtual sensors now require double index lm instead of
just l. With the matrix notation adopted for Eq. �16�, a pair

lm indexes a column of matrix G̃. Arranging the Wigner
rotation coefficients as matrix �D�� , ,���lm,l�,m�l
=Dmm�

�� , ,��, the basis is then rotated with
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G̃� = G̃D��,,�� , �20�

and the basis transform that includes an arbitrary rotation is
given by

B��k,�,,�� = B�k�D��,,�� . �21�

To summarize the overall design structure, let us com-
bine the previous equations in a compact form. The response
of the array is now given by

f�k,�� = g�k,��B�k�D��,,��c̃�k� . �22�

The corresponding signal-flow diagram is shown in Fig. 1.
Vector g�k ,�� is the response of the N sensors to a plane
wave. B�k� uncouples the spatial response from the spectral
response. D�� , ,�� steers the spatial response into an arbi-
trary direction; and c̃�k� defines its spatial profile for each
frequency separately. Choosing the same coefficients c̃�k�
for all frequencies yields an array response that is frequency
invariant.

This structure uncouples the steering geometry from that
of the array geometry. In previous approaches, the ability to
steer seemed inevitably linked to the choice of array archi-
tecture and the corresponding analytic inversion formulas.
The problem of steering the array has also been uncoupled
from that of choosing its spatial profile, and finally, the de-
sign of the frequency response has been separated from that
of the spatial response.

A. Steering in a linear array

For the special case of a linear array, the situation is
complicated by the lack of full control over the two-
dimensional beam pattern. In a vertical linear array, one can
specify the response profile only in elevation �. Rotating an
axis-symmetric shape in elevation by  violates the axial
symmetry around the z axis. Therefore, one cannot rotate a
beam pattern by angle  and at the same time preserve sym-
metry in �. As a result, there is no basis in � that is isomor-
phic with respect to a shift. However, one can aim to find a
transformation that approximately preserves a spatial profile
defined in �� �0,��. One may choose, for instance, the Leg-
endre basis and expand its shifted version in the same basis

FIG. 1. Sign
function set;
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Pl��cos ��� 
 �
l=0

L

Dll���Pl�cos �� , �23�

Dll��� =
2l + 1

2
�

0

�

Pl��cos�� − ��Pl�cos �� dcos � ,

�24�

which defines a basis rotation or shift analogous to Eq. �18�.
The approximation results from the truncation of the sum at
L	�. An optimal choice of basis would minimize this ap-
proximation error, implying that a shift of the basis can be
expressed accurately within the same order �l�L�. There-
fore, in an ideal basis the shift matrix, �D���ll�=Dll���, will
have triangular structure such as in the case of spherical
harmonics.16 Figure 2 shows that the shift matrix D�� for
the Legendre basis is, in fact, approximately triangular re-
sulting in small truncation errors. Therefore, for the linear
array we suggest to use,

g̃l��� = Pl�cos �� . �25�

Using the appropriate definitions for matrix D�� based
on Eq. �24�, one can write the corresponding equations for
this approximate shift of the beam pattern as in Eqs. �20� and
�21�.

In principle, there should be a closed-form solution to
integral �24�. However, in practice, it may be more efficient
to evaluate the integral once �perhaps numerically� for each
desired shift angle , and store the L2 coefficients for later
use. To evaluate the Legendre coefficients of a general func-
tion, f�z�, numerically one may discretize the angle with Q
samples, zq=cos �q, and convert the integral into a discrete
sum. This can be expressed efficiently in matrix-vector nota-
tion by defining matrix �P�ql= Pl�zq�, and vector �f�q= f�zq�.
The Legendre coefficient for function f�z� arranged as vector
�c̃�l= c̃l are computed with

c̃ = P†f , �26�

where the pseudo-inverse P† implements the integration sum
and proper quadrature weights for any sampling of �.19

w diagram.
al flo
Transformation �26� is inverted in approximation with
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f 
 Pc̃ . �27�

As with any pseudo-inverse, the approximation is exact if
dim�f�=dim�c̃�, while the square error is minimized for
dim�f�
dim�c̃�. With this notation, the shift matrix D��
in Eq. �24� is,

D�� = P†P��� , �28�

where matrix P� captures the L Legendre polynomials evalu-
ated at Q cosines shifted by : �P����ql�= Pl��cos��q−��.

VIII. EFFECTIVE BEAM CONTROL, MEASUREMENT
NOISE, AND REGULARIZATION

When computing the basis B with Eq. �17�, it was re-
quired that matrix G be of full rank. However, in practice,
the matrix GH�k�G�k� is ill conditioned for the lowest fre-
quencies and, therefore, cannot be accurately inverted when
computing the pseudo-inverse G†�k�. This is to be expected
for very low frequencies with a large wavelength since a
limited aperture prevents effective spatial resolution. Simi-
larly, for high frequencies, the finite spacing of sensors gen-
erates aliasing side lobes, once again leading to a noninvert-
ible GH�k�G�k� �recall the goal of using only a small number
of sensors�. This limitation is inherent to any beamforming
design and is typically resolved by restricting the frequency
band of operation or carefully choosing sensor spacing and
array aperture. In the present numerical inversion approach,
the instability leads to rather large gains which may arbi-
trarily magnify sensor noise. This section shows how this
problem can be resolved by considering the effect of mea-
surement noise.

Assume zero-mean wide-sense stationary additive sen-
sor noise wn�t� with power spectrum �2�k�. The sensor signal

in response to a plane wave is now �in the frequency domain�
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xn�k� = gn�k,�� + wn�k� . �29�

With the appropriate definition of matrix �W�k��qn=wn�k�,
Eq. �16� now becomes

�G�k� + W�k��B�k� = G̃ . �30�

Note that the signal of the steady-state plane wave G�k� is
deterministic, while the noise W�k� is a random variable. To
find the optimal basis, one now has to minimize the expected
value over the random noise:

E���G�k� + W�k��B�k� − G̃�2� . �31�

For noise that is uncorrelated with the signal, this evaluates
�omitting dependency on k� to the following trace:

Tr�BH�GHG + E�WHW��B − BHGHG̃ − G̃HGB� . �32�

This criterion is minimized by

B = �GHG + ��−1GHG̃ , �33�

which, as usual, is obtained by setting the derivative with
respect to BH equal to zero and solving for B. If the noise is
spatially uncorrelated and homogeneous in space, then the
N�N matrix ��k�=E�W�k�HW�k�� is diagonal with powers
�n

2�k� on the diagonal. This result is the conventional regu-
larization of the pseudo-inverse. The examples presented in
Sec. XI will use this regularization.

IX. APPLICATION TO ADAPTIVE BEAMFORMING
DESIGN

The time domain output y�t� of the filter array in re-
sponse to sensor readings xn�t� is given by the convolution
and sum:

y�t� = �
N

cn�t� � xn�t� = �
L

c̃l�t� � x̃l�t� . �34�

FIG. 2. Legendre basis functions and their rotations.
Top two panels show Legendre basis functions as inten-
sity images up to order L=20. Left and right panels
represent Pl��� and Pl��−�. This example is for a
rotation angle =30°. Bottom left panel shows the ap-
proximation error in Eq. �23� due to truncation at L
=20. Bottom right panel shows the corresponding ma-
trix Dll� as defined in Eq. �24�. All four panels use the
same intensity gray scale.
n=1 l=1
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The second equality here results from Eq. �8� and the
following definition of the frequency-invariant virtual sensor
readings:

x̃l�t� = �
n=1

N

bnl�t� � xn�t� . �35�

This suggests that adaptive algorithms, that are driven
by the sensor observations, can be applied to the signals of
the newly defined frequency-invariant virtual sensors. In-
stead of optimizing filter parameters, cn�k�, based on sensor
readings, xn�t�, the adaptive algorithm now adapts param-
eters c̃l�k� based on virtual sensor readings, x̃l�t�. All known
adaptive beamforming algorithms, such as generalized side-
lobe canceling, blind source separation, and others are, there-
fore, immediately applicable without further modification.

To find an optimal frequency-invariant response, the
adaptive algorithm will now optimize the parameters c̃l. If
the algorithm is based on a gradient of some cost function,
J��c̃l�k���, with a set of frequency dependent parameters,
�c̃l�k��, the frequency-invariant gradient is then simply the
original gradient summed over all frequencies

�J

�c̃l

= �
k

�J

�c̃l�k�
. �36�

Note that this has the potential to significantly reduce the
number of free parameters as the same coefficients are used
for all frequencies. For most adaptive algorithms, this will
result in significant improvements in convergence speed as
well as estimation accuracy. This advantage is in addition to
the potential advantage of a frequency-invariant response.

X. APPLICATION TO IRREGULAR LINEAR ARRAY
WITH LEAST-SQUARES BEAM DESIGN

The proposed method was implemented for a linear ar-
ray of omnidirectional sensors and Legendre polynomials as
the beamforming basis, i.e., Eqs. �13� and �25�. Notice that
Eq. �13� does not require equidistant sensor placement. The
least-squares solution given by Eq. �17� is used to compute
the basis transform. Choosing Legendre polynomials, as in
Eq. �25�, as the frequency-invariant virtual array response in
Eq. �17� means that

G̃ = P . �37�

The effectiveness of the resulting basis is demonstrated
by estimating parameters c̃ that optimally reproduce a de-
sired beam pattern. To this end, one could use a variety of
beam design methods.20 A simple data-independent method
is the least-squares beamformer, which will be used here.
Assume the prescribed response is specified as a vector f
with coefficients fd, each of which represents the desired
response for angles �d, d=1, . . . ,D. The response of the ar-
ray at those angles can be written in matrix notation as

f = G���Bc̃ , �38�

where the coefficients of matrix G��� are given by �G�dn

=gn��d� specifying the response of the nth sensor for the
˜
desired angle �d. The goal is to find the coefficient c that
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reproduces the desired response f. Equation �38� does not
include rotation. Instead, rotation is introduced after de-
termining the optimal coefficients for a desired response.
With N sensors, one can satisfy, at most, N conditions on
the response. A larger number of conditions can only be
satisfied approximately. The coefficients that reproduce f
with the least-squares error are given by

c̃ = �G���B�†f . �39�

Without going into detail, one should note that it is also
useful to regularize this inverse, as in Eq. �33�.

The Legendre basis uses L basis coefficients and can be
rotated without having to recompute coefficients. One can
compare this with the coefficient obtained in a naive

frequency-invariant basis with �G̃�qm=�qm in Eq. �17�. This
basis requires Q coefficients, which is typically significantly
larger than L, and the coefficients have to be recomputed
when the response is to be rotated. For this “naive” basis, Eq.
�39�, simplifies to

c̃ = �G���G†�†f . �40�

In Eqs. �38�–�40�, the dependence on frequency was
omitted for simplicity. The optimal parameters for each fre-
quency are computed with Eq. �39� or �40�. For a frequency
invariant basis, one should use the same coefficients for all
frequency bands. One option is to use the coefficients com-
puted with Eq. �40� averaged across frequencies, c̃
=1/T�kc̃�k�. Though suboptimal, this approach is not only
simpler but in practice shows also better error behavior com-
pared to the “optimal” solution, which would require com-
bining all frequencies prior to computing the pseudo-inverses
in Eq. �39� or �40�. Simulations show that this averaging of
coefficients across frequencies results in more evenly distrib-
uted deviations from the desired solutions as compared to the
globally optimal solution.

Note that even after regularization, effective beam de-
sign is not possible at frequencies for which GHG is not
invertible. One measure for the instability of the inverse �or
rank deficiency of G� is the condition number. One can use
the condition number as a criterion to exclude frequency
bands when computing the average c̃. The examples de-
scribed below assume acoustic sensors with a sound propa-
gation speed of 342 ms−1. For an aperture of 10 cm, one
finds a useful frequency range �with condition number
	150 dB� of at least 100–5000 Hz.

XI. EXAMPLES

Figure 3 shows the results obtained for a linear array of
omnidirectional sensors with irregular spacing and an aper-
ture of 10 cm. Arbitrary spacing of a small number of sen-
sors �N=3 and N=5� was used to highlight the advantage of
the present technique as compared to existing analytic meth-
ods, which typically require a larger number of sensors in a
regular arrangement.

The figure shows that frequency invariance is reasonably
well maintained up to the Nyquist frequency of 5000 Hz
despite using only one set of coefficients �instead of separate

coefficients for each of the T /2+1 frequency bins�. Time
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domain coefficients were computed with T=128, which re-
sults in a reduction of the number of free parameters by a

FIG. 3. �Color online� Frequency-invariant design of null beam �left� and
compares results for different design parameters. First and third columns show
response as function of frequency k and angle �. Gray-scale represents respo
−30 dB noise. The same parameters are used for the following rows except t
only three microphones; Fifth row shifts the Legendre basis by 30° degrees
factor of 65.

J. Acoust. Soc. Am., Vol. 119, No. 6, June 2006
In these examples, the Legendre basis included orders
up to L=20, and the basis transform was computed with Eq.

in beam �right�. Top panels show desired responses. Each following row
e-domain filter coefficients cn�t�. Second and third columns show magnitude

dB. First row is obtained with a Legendre basis with five sensors assuming
econd row assumes zero noise; Third row uses naive basis; Fourth row uses
ma
tim

nse in
hat: S
�33� using Q=200 equidistant samples �n. Compare this to

Lucas C. Parra: Steerable frequency-invariant beamforming 3845



the third row showing the result with the naive basis. There
is no significant difference to the Legendre basis �shown in
the first row� despite the reduction of the number of param-
eters by a factor of Q /L=10. The Legendre basis therefore
makes the array steerable and reduces the number of param-
eters without compromising accuracy. In practice, the order
of the Legendre basis should be chosen depending on the
desired angular bandwidth.

White noise with a power of −30 dB was assumed, ex-
cept in the second row where no regularization was used, i.e.,
the basis was computed with Eq. �17�. However, note that
when the condition number exceeded 150 dB, those fre-
quency bands were excluded regardless of the noise assump-
tions. Notice the significant scale increase in the filter coef-
ficients indicating excessive low-frequency gain. Therefore,
noise-based regularization should always be used in practice.

In these examples, N=5 sensors are located at rn=0, 2,
5, 7, and 10 cm. Compare this with the fourth row that has
only N=3 sensors located at rn=0, 5, and 10 cm. This com-
parison indicates that the deviation from frequency invari-
ance is primarily due to the limited number of sensors. Not
surprisingly, as the number of sensors increases, frequency
invariance is improved.

Finally, the last row demonstrates the effect of shifting
the Legendre basis by an angle of =30° �as in Fig. 2�
leading to a corresponding shift of the beam pattern.

Simulations with different sensor locations �not shown�
indicate that the performance of the proposed method does
not depend significantly on the specific arrangement of sen-
sors. This is expected as the proposed method is guaranteed
to make the best use of a fixed and known sensor configura-
tion. However, as with conventional beam-design methods,
some sensor arrangements are better suited to minimize
aliasing and increase resolution. The present work did not
aim to determine such optimal sensor locations. See, for in-
stance, Ref. 21 for a modern technique to optimize locations.

Similarly, the sensitivity to errors in sensor position is
comparable to conventional beam design. Simulations on the
examples above �not shown� indicate only minor effects for
location errors of about 1 mm �
5% of the microphone
spacing� but a significant deterioration for larger position er-
rors. As with conventional beam design, it is preferable to
use adaptive rather than data-independent methods as they
can adapt to position errors. Section IX outlined how to
implement adaptive design methods using the frequency-
invariant basis.

XII. CONCLUSION

The previous section demonstrated the proposed method
on a linear array. The implementation for a volumetric array
is straightforward using definition �4� or expansion �11� for

G, and using spherical harmonics �19� to define matrix G̃
analogous to matrix P. The linear array was chosen here
because the resulting frequency-invariant beam patterns are
easier to visualize on paper, and because steering required
special consideration as a result of the restricted linear ge-
ometry. No such complication should arise for a volumetric

array since the Wigner rotations in Eq. �18� are exact. For a
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planar array, analogous considerations to those of the linear
array may be necessary to cope with the symmetry across the
array plane.

The presentation in this paper was restricted to omnidi-
rectional sensors. However, the method applies equally well
to sensors with directional response. If the sensor response is
specified by r�k ,��, then g�k ,�� has to be replaced by
r�k ,��g�k ,�� everywhere.

Finally, the notation here considers only the far-field re-
sponse. One can generalize the argument to the near field by
replacing plane waves of orientation � with point sources
located at position r. In that case, the array response to a
planar wave, gn�k ,��, is to be replaced by the array response
to a spherical wave,9 gn�k ,r�=eik·�r−rn� / ��r−rn��, and r has
to be discretized over the desired range of point source po-
sitions when computing B. The expansion for the spherical
rather than a planar wave is given by Eq. �11� whereby the
spherical Bessel function jl�krn�� is replaced by
jl�krn�� / jl�kr�.9 The rationale leading to a steerable beam de-
sign remains fully applicable.
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