
320 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 3, MAY 2000

Convolutive Blind Separation of Non-Stationary
Sources

Lucas Parra and Clay Spence, Associate Member, IEEE

Abstract—Acoustic signals recorded simultaneously in a
reverberant environment can be described as sums of differently
convolved sources. The task of source separation is to identify the
multiple channels and possibly to invert those in order to obtain
estimates of the underlying sources. We tackle the problem by
explicitly exploiting the nonstationarity of the acoustic sources.
Changing cross-correlations at multiple times give a sufficient
set of constraints for the unknown channels. A least squares
optimization allows us to estimate a forward model, identifying
thus the multi-path channel. In the same manner we can find
an FIR backward model, which generates well separated model
sources. Furthermore, for more than three channels we have
sufficient conditions to estimate underlying additive sensor noise
powers. We show good performance in real room environments
and demonstrate the algorithm's utility for automatic speech
recognition.

Index Terms—Blind source separation, frequency domain, mul-
tipath channel, multiple decorrelation, nonstationary signals.

I. INTRODUCTION

I N RECENT years, a growing number of researchers have
published on the problem of blind source separation. The

problem seems to be relevant in various application areas, e.g.,
speech enhancement with multiple microphones, crosstalk
removal in multichannel communications, multi-path channel
identification and equalization, direction of arrival (DOA)
estimation in sensor arrays, improvement over beamforming
microphones for audio and passive sonar, and discovery of
independent sources in various biological signals, such as EEG,
MEG and others. Additionally, theoretical progress in our
understanding of the importance of higher-order statistics in
signal modeling has generated new techniques for addressing
the problem of identifying statistically independent signals—a
problem that lies at the heart of source separation. This de-
velopment has been driven not only by the signal processing
community but also by machine learning research that has
treated the issue mainly as a density estimation task.

The basic problem is simply described. Assumestatisti-
cally independent sources . These
sources are convolved and mixed in a linear medium leading to
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sensor signals that may include
additional sensor noise

(1)

How can one identify the coefficients of the channels
and how can one find an estimate for the unknown sources?

Alternatively one may formulate an FIR inverse model

(2)

and try to estimate such that the model sources
are statistically independent.

Early work in the signal processing community had suggested
decorrelating the measured signals, i.e., diagonalizing measured
correlations for multiple time delays [1], [2]. For an instanta-
neous mix ( , or ), also referred to as the constant
gain case, it has been shown that for nonwhite signals, decorre-
lation of multiple taps are sufficient to recover the sources [3],
[4]. Early on however it became clear that for convolutive mix-
tures of wide-band signals this solution is not unique
[5], and in fact may generate source estimates that are decor-
related but not statistically independent. As clearly pointed out
by Weinsteinet al. in [6] additional conditions are required. In
order to find separated sources it seems one would have to cap-
ture more than second-order statistics, since, indeed, statistical
independence requires that not only second but all higher cross
moments vanish.

Comon [7], [8] formulated the problem of an instantaneous
linear mix, clearly defining the termindependent component
analysis, and presented an algorithm that measures indepen-
dence by capturing higher-order statistics of the signals. Pre-
vious work on DOA estimation had already suggested higher-
order statistics [9], [10]. Cardoso [11] suggested that the eigen-
structure of fourth-order cumulants could be used for blind sep-
aration. Herault and Jutten [12] were the first to capture higher
statistics by decorrelating nonlinear transformations of the sig-
nals. Pham [13] and later Bell and Sejnowski [14] presented a
simple algorithmic architecture which in effect performs den-
sity estimation [15], [16] and is based on prior knowledge of
the cumulative density function of the source signals. Amariet
al. made modifications to the update equations to dramatically
improve convergence and computational costs [17].

In the convolutive case Yellin and Weinstein [18] established
conditions on higher order multi-tap cross moments that allow
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convolutive cross talk removal. Thi and Jutten [19] gave simpler
iterative algorithms to estimate the forward modelbased on
multitap third and fourth-order cross moments. Recently Sham-
sunder and Giannakis have suggested to use trispectra, i.e., a fre-
quency representation of fourth order moments, to compute the
forward model [20]. Although these algorithms extend to higher
dimensions, these researchers have concentrated on the two-di-
mensional case since in two dimensions a multichannel FIR for-
ward model can be inverted with a properly chosen architecture
using the estimated forward filters. For higher dimensions, how-
ever, the problem of finding a stable inverse approximation of
the forward model remains unsolved.

In contrast, the density estimation approaches mentioned be-
fore generalize to the convolutive case by estimating an FIR
backward model that directly tries to generate independent
model sources [21], [22]. They resemble equations obtained
from multidimensional extensions of the Busgang blind equal-
ization method [21]. Maximum likelihood density estimation
derivations of this type of algorithm are given in [23], [24].

All these techniques are shown to work satisfactorily in com-
puter simulations but perform poorly for recordings in real en-
vironments. One could speculate that the densities may not have
the hypothesized structures, the higher-order statistics may lead
to estimation instabilities, or the violation of the stationarity
condition may cause problems.

An alternative approach to the statistical independence con-
dition is to exploit the additional second-order information pro-
vided by nonstationary signals. While it is true that diagonaliza-
tion of single-time cross-correlation (or cross-power spectrum)
is not sufficient, additional information is obtained if one con-
siders second-order statistics at multiple times. This has been
used in the instantaneous case [25] and the equivalent problem
of convolutive mixtures of narrow-band signals [26]. In the con-
volutive case with broad-band signals this idea has been touched
on by Weinstein et al. in [6]. For nonstationary signals a set of
second-order conditions can be specified that uniquely deter-
mine the parameters. No algorithm was given in [6] nor have
there been any results reported on this approach to our knowl-
edge. Ehlers and Schuster [27] recently proposed a related algo-
rithm that attempts to solve for the frequency components of
by extending prior work of Molgedey and Schuster [28] on in-
stantaneous mixtures into the frequency domain. However, they
mistakenly confuse this idea with simple decorrelation of mul-
tiple taps in the time domain, which is known to be insufficient
[5]. After our first presentation of this work in [29] we have
found contemporary work by Principe [30] who suggests a sim-
ilar approach for the time domain, and Murataet al. [31], and
Kawamoto [32] for the frequency domain.

We take up this multiple decorrelation approach assuming
nonstationary signals and use a least squares (LS) optimization
to estimate or as well as signal and noise powers. As such,
the algorithm makes no assumptions about the cumulative den-
sities of the signals and limits itself to more robust second-order
statistics. Unlike most previous work on source separation, we
take additive sensor noise into account.

In Section II, we present our approach for the instantaneous
case and point out the differences between estimating the for-
ward model and the backward model . In addition to the

source power one can estimate additive sensor noise powers.
Computing estimatesfrom a forward model requires a fur-
ther estimation step, in particular for the case of fewer sources
than sensors, i.e. . The least squares (LS), maximum
likelihood (ML) or maximum a posteriori probability (MAP)
estimates are given in Section II.C. In a backward modelthe
LS optimization gives the inverse of the mixture and we obtain
model sources directly. In Section III we carry over the con-
cept of multiple decorrelation to the convolutive case by solving
independent models for every frequency. We pay particular at-
tention to the approximation of linear convolutions by circulant
convolutions in Section III-A as well as the permutation issue
in Section III-C. Since inverting a multichannel forward FIR
model is in itself a challenging task we restrict ourself in the
implementations to estimating the inverse model. Finally we
report some encouraging results on real room recordings in and
demonstrate the utility of the algorithm for automatic speech
recognition in Section IV.

II. I NSTANTANEOUSMIXTURE

As discussed in the previous section, for the instantaneous
case a multitude of approaches have been proposed. We present
it here in order to lay out some basic ideas, which will be used
again in the convolutive case. Part of our treatment of additive
sensor noise estimates goes beyond previous work.

A. Forward Model Estimation

For an instantaneous mixture, i.e., , the forward model
(1) simplifies to

(3)

We can formulate the covariance of the measured signals
at time with the assumption of independent noise as

(4)

Since we assume uncorrelated sources at all times, we postulate
diagonal covariance matrixes . We also assume uncorre-
lated noise at each sensor, i.e., diagonal .

Note that any scaling and permutation of the coordinates of
can be absorbed by . It is well known that the solution

is therefore only specified up to an inherently arbitrary permu-
tation and scaling. We are therefore free to choose the scaling of
the coordinates in. For now we choose ,
which places conditions on our solutions.

For nonstationary signals, a set of equations (4)
for different times and the scaling con-
ditions give a total of con-
straints on unknown parameters

.1 Assuming all

1We will abbreviate the notation in the reminder of the paper by writing
� (k) for � (t ) and dropping the argument, i.e.,� , when we refer to all
� (t ); . . . ;� (t ). We use this notation also for� (t) andR (t).



322 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 3, MAY 2000

conditions are linearly independent we have sufficient condi-
tions if

(5)

It is interesting to note that in the square case, , there
are not sufficient constraints to determine the additional noise
parameters unless , no matter how many more times one
considers.2 If we assume zero additive noise, in principle
is sufficient to specify the solution up to arbitrary permutations.

In the square case, the solutions can be found by solving a
nonsymmetric eigenvalue problem, as outlined in [28]. The dif-
ficulty with such algebraic solutions, however, is that one does
not have perfect estimates of . At best one can assume
nonstationary signals and measure the sample estimates
within some time interval. If we interpret the inaccuracy of that
estimation as measurement error

(6)

it is reasonable to estimate the unknown parameters by mini-
mizing the total measurement error for a sufficiently large

(7)

The matrix norm here is the sum of the absolute squared values
of every coefficient. Note that .
This represents a least squares (LS) estimation problem. To find
the extrema of the LS cost in (7) let us
compute the gradients with respects to its parameters3

(8)

(9)

(10)

We can find the minimum with respect to, and with a
gradient descent algorithm using the gradients (8), and (9). The
optimal for given and at every gradient step can
be computed explicitly by setting the gradient in (10) to zero,
which yields .

B. Normalization Conditions

In the previous section we proposed to fix the arbitrary
scaling by setting the diagonal parameters . For
the nonsquare case this normalization may seem somewhat
arbitrary. One could in such a case demand instead that

with . Instead
of the gradients given in (8) one then has to consider their

2One can see this by re-writing the inequality asK(d �3d )+2(d �d ) �
0. The second term is never positive, and the first is only positive ifd � 4.

3The diagonalization operator here zeros the off-diagonal elements, i.e.

diag(M) =
M ; i = j

0; i 6= j

projections onto the hyper-planes defined by . The
projection operator for theth column of is

(11)

Or we can write a constraint gradient

(12)

C. Estimation of Source Signals

In the case of a square and invertible mixing matrix, the
signal estimates are trivially computed to be . In the
nonsquare case for we can compute the LS estimate

(13)

If we assume the additive noise to be Gaussian, but not neces-
sarily white or stationary, we can compute the maximum likeli-
hood (ML) estimate

(14)

where is the Gaussian probability density given by the noise
density. If we further assume the signal to be Gaussian, again not
necessarily white or stationary, we can compute the maximum
a posteriori probability (MAP) estimate. For Gaussian densi-
ties the MAP estimate is equal to the conditional expectation

(15)

Note however that the resulting estimates may not be uncor-
related. Assuming that the model is correct and that we found
the correct estimate

(16)

Since the second term may not be diagonal, the resulting esti-
mates can be correlated. However, this is not a problem since
the correlation is entirely due to correlated noise and the signal
portion of the estimates remains uncorrelated.

D. Backward Model

Instead of estimating a forward model and then from that fur-
ther estimating the source signal, one may try to directly esti-
mate a backward model in the form of (2), in order to model
separated sources , which we define as

(17)

We are looking therefore for a that inverts . This will be
especially relevant for the discussion of the convolutive case in
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the next section. In analogy with the previous discussions and
using definition (17) and assuming (3) we have

(18)

We will search for such that diagonalizes si-
multaneously for different times4 . The LS estimate is then

(19)

where

In analogy to the discussion in Section II-A, we can find the
solutions with an iterative gradient algorithm.

III. CONVOLUTIVE MIXTURE

In the previous section we described how one can treat the
case of instantaneous mixtures by decorrelating the covariance
matrices at several times. This approach requires nonstationary
sources. The problem can also be treated by decorrelating the
cross-correlation at different lags. This requires that the signals
be nonwhite rather than nonstationary. This is the approach tra-
ditionally taken in the literature [2], [28], [4], [6].

Recall now (1) of the convolutive case

(20)

As suggested for other source separation algorithms, our ap-
proach to the convolutive case is to transform the problem into
the frequency domain and to solve simultaneously a separation
problem for every frequency [22], [27], [31], [33], [34]. The so-
lution for each frequency would seem to have an arbitrary per-
mutation. The main issues to be addressed here are how to ob-
tain equations equivalent to (4) or (18) in the frequency domain,
and how to choose the arbitrary permutations for all individual
problems consistently. We will take up these issues in the fol-
lowing sections.

A. Cross-Correlations, Circular and Linear Convolution

First consider the cross-correlations
. For stationary signals the absolute time does

not matter and the correlations depend on the relative time, i.e.
. Denote with the -transform of

. We can then write

(21)

where represents the matrix of-transforms of the FIR
filters , and , and are the -transform of the
auto-correlation of the sources and noise. Again they are diag-
onal due to the independence assumptions.

4Similar considerations to those given for (16) show that decorrelating
u(t) = Wx(t), as defined in (2), rather than̂s(t) may not lead to the correct
solution in the presence of sensor noise.

For practical purposes we have to restrict ourself to a lim-
ited number of sampling points of. Naturally we will take
equidistant samples on the unit circle such that we can use the
discrete Fourier transform (DFT). For periodic signals the DFT
allows us to express circular convolutions as products such as in
(21). However, in (1) and (2) we assumed linear convolutions.
A linear convolution can be approximated by a circular convo-
lution if the frame size of the DFT is much larger than the
channel length . We can then write approximately

for (22)

where represents the DFT of the frame of
size starting at , given by

, and corresponding
expressions apply for and .

For nonstationary signals, the cross-correlation will be time
dependent. Estimating the cross-power-spectrum at the desired
resolution of is difficult if the stationarity time of the signal
is on the order of magnitude of or smaller. We are content,
however, with any cross-power-spectrum average that diagonal-
izes for the source signals. One such sample average is

(23)

We can then write for such averages

(24)

If is sufficiently large we can model and as
diagonal, again due to the independence assumption. For (24) to
be linearly independent for different timesit will be necessary
that changes over time for a given frequency, i.e., the
signals are nonstationary.

B. Backward Model

Given a forward model , it is not guaranteed that we can find
a stable inverse. In the two-dimensional square case the inverse
channel is easily determined from the forward model [6], [19].
However, it is not apparent how to compute a stable inversion for
arbitrary dimensions. In this present work we prefer to directly
estimate a stable multi-path backward FIR model such as (2). In
analogy to the discussion above and in Section II-D, we wish to
find model sources with cross-power-spectra satisfying5

(25)

In order to obtain independent conditions for every time, we
choose the times such that we have nonoverlapping averaging
times for , i.e. . But if the signals vary
sufficiently fast, overlapping averaging times could have been
chosen. A multipath model that satisfies these equations for

5W(!) represents the DFT with frame sizeT in the time domainW(�). In
the following, time and frequency domain are identified by their argument� or
!.
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times simultaneously can be found, again with a LS estimate6

(26)

Note the additional time domain constraint on the filter size
relative to the frame size . This condition can be satis-

fied by choosing short filters or alternatively larger frame sizes
. Up to that constraint it would seem the various frequen-

cies represent independent problems. However
the solutions are restricted to those filters that have zero
time response for . Effectively we are parameter-
izing filter coefficients in with parameters

. The LS solutions can again be found with a gradient de-
scent algorithm. We will first compute the gradients with respect
to the complex valued filter coefficients and discuss their
projections onto the subspace of permissible solutions in the fol-
lowing section.

For any real valued function of a complex valued vari-
able the gradients with respect to the real and imaginary part
are obtained by taking derivatives formally with respect to the
conjugate quantities , ignoring the nonconjugate occurrences
of [35], [36], i.e.,

(27)

Therefore the gradients of the LS cost in (26) are

(28)

(29)

(30)

Again, we can find the minimum with respect to , and
with a constrained gradient descent algorithm using

the gradients (28), and (30). The optimal for given
and at every gradient step can be computed

explicitly by setting the gradient in (29) to zero, which yields
.

For the simulations in Section IV we have found that conver-
gence of the gradient algorithm can be improved substantially
if a different adaptation constant is used for every frequency.
Note that the gradient terms scale with the square of the signal
powers . The signal powers vary considerably across fre-
quency. As a result, the gradient terms for different frequencies
have very different magnitudes. Normalizing by the powers will
therefore scale the gradient to give comparable update steps for
different frequencies. This can be achieve easily by defining a
weighted cost, . We find
good results by choosing a straightforward power normaliza-
tion, .

6Again, we abbreviate the notation by writing� (!; k) for � (!; t ) and
dropping the argument, i.e.� , when we refer to all� (!; t ) for all ! andk.
We use this notation also for� (!; t) andR (!; t).

C. Permutations and Constraints

Note that arbitrary permutations of the coordinates for each
frequency will lead to the same error . Therefore the
total cost will not change if we choose a different permutation
of the solutions for each frequency. This seems to be a serious
problem since only consistent permutations for all frequencies
will correctly reconstruct the sources.

Arbitrary permutations, however, will not satisfy the condi-
tion on the length of the filter, for . Ef-
fectively, requiring zero coefficients for elements with
will restrict the solutions to be continuous or “smooth” in the
frequency domain, e.g., if the resulting DFT corre-
sponds to a convolved version of the coefficients with a sinc
function eight times wider than the sampling rate.

The constraint on the filter size versus the frequency res-
olution links the otherwise independent frequencies, and
solves the frequency permutation problem—a crucial point that
may have not been realized in previous literature. In addition, it
is a necessary condition for (25) to hold to a good approxima-
tion. Note also that it does not limit the actual filter size, as in
principle one can choose an appropriately large frame sizefor
any given .

We can enforce the filter size constraint by prop-
erly projecting the unconstrained gradient (28) to the
subspace of permissible solutions. The projection oper-
ator that zeros the appropriate delays for every channel

is

(31)

where the DFT is given by , and is diag-
onal with for and for .

The projection operator that enforces unit gains on diagonal
filters is simply applied by setting the diagonal
terms of the gradients to zero. These projections are orthogonal
and can be applied independently of each other. This stands in
contrast to the normalization constraint outlined in Sec-
tion II-B. That projection operator is not orthogonal to
and care has to be taken to apply a proper projection that maps
the gradient to the joint subspace of and . A simple,
though admittedly inefficient, solution is to apply and
successively and repeatedly to the gradients until convergence.
In our simulations, three to five iterations were sufficient. The
resulting constrained gradient can be used in a gradient update
of the filter parameters.

The computational cost of the algorithm is dominated by the
costs of estimating in (23), the gradient computation in
(28), and the projection (31). Before the gradient descent starts,
one needs to evaluate (23) times, resulting in a computa-
tional cost of . Thus every gradient step
requires a computation of in (28) and

in (31).

IV. EXPERIMENTAL RESULTS

We have done experiments with algorithm (28)–(31)7 in var-
ious realistic environments and obtained very different results

7We used the weighted gradients as described at the end of Section III-B.
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depending on the number of sources and microphones, station-
arity of the signal, reverberation of the room (size and wall re-
flectance), type of microphones, etc. Obviously it is hard to eval-
uate the entire space of possible setups. In this section we report
results on experiments with recordings in realistic environments
such as offices and conference rooms. We show improvement
in the signal to interference ratio and demonstrate improvement
over a distant talking microphone for a large vocabulary speech
recognizer. For a more systematic study of the various param-
eters we also performed experiments with simulated room re-
sponses.

The following results report the improvements in terms of the
signal to interference ratio (SIR), which we define for a signal

in a multipath channel to be the total signal powers of
the direct channel versus the signal power stemming from cross
channels

(32)

In the case of known channels and source signals we can
compute the expressions directly by using a sample average
over the available signal and multiplying the powers with the
given direct and cross channel responses. In the case of un-
known channel response and underlying signals we can estimate
the direct powers (numerator) and cross-powers (denominator)
by using alternating signals. We estimate the contributions of
source while source is “on” and all other sources are “off.”
During periods of silence, i.e., all sources are “off” we can esti-
mate background noise powers in all channels to subtract from
the signal powers. This information is only used for reporting
SIR improvements and is obviously not used in the adaptation
phase.

The results obtained for real recordings vary widely. Fig. 1
shows the results for varying filter sizes on the separation of
two competing speakers whom we recorded with two micro-
phones. In all experiments in this section we used .
The improvement in SIR can be as high as 15 dB for record-
ings obtained in an office room using unidirectional (cardioid)
microphones (upper curve). Separating two speakers from the
recordings in a second room with omnidirectional microphones
seems more challenging (lower curve)8 . As expected, the per-
formance initially increases with increasing filter size, as the
inverse of the room can be modeled more accurately. However,
larger filters may require more training data, and so the perfor-
mance eventually decreases given the constant amount of data.

We observed in further experiments that separation works
better in large conference rooms than in small office rooms with
stronger reflecting walls, most likely due to the increased re-
verberation. To verify these result more systematically we used
simulated room responses, according to [38], with 1000–2000
filter taps at 8 KHz. Fig. 2 shows the results obtained for varying
room sizes. As one can see, with increasing room size the sep-
aration performance improves.

The SIR’s in Figs. 1 and 2 do not change smoothly, which
may be explained by the fact that the algorithm is not optimizing
the SIR directly but instead multiple decorrelations. Also, the

8The data for this second example was provided by the authors of [37].

Fig. 1. Separation performance for two speakers recorded with two
microphones in two different office environments as a function of separation
filter sizeQ. Upper curve: unidirectional microphones in a3 m�3:6 m�2:3 m
room, 30 s recordings at 8 KHz, 15 s alternating and 15 s simultaneous
speech. Lower curve: 10 s simultaneous speech recorded at 16 KHz in a
4:2 m� 5:5 m� 3:1 m room with omnidirectional microphones.

Fig. 2. SIR improvement in simulated rooms of varying sizea�a�a=2, with
side lengtha. Rooms with a typical office room reflectance characteristic were
used (gypsum walls, ceiling with acoustic tiles, carpet on concrete floor). The
two microphones where placed two meters apart at an anechoic wall, making
their response characteristic effectively directional. The speaker is in front of
one microphone at a distance of 1 m. The interfering music source is at 4 m in
front of the second microphone. Results are shown for different separation filter
sizesQ. We used 15 s signals at 8 KHz.

gradient algorithm may be reaching different local minima of
the diagonalization criterion.

Another interesting question is how the performance im-
proves if we use additional microphones, given a constant
number of sources. Again, for a systematic evaluation we
used the same simulated room and microphone setup as in
the previous experiment. The results in Fig. 3 show a clear
improvement in separating two sources as the number of
microphones increases.
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From previous experiments we know, however, that for an
increasing number of sources and microphones the performance
degrades [29]. This is expected as the amount of data increases
linearly with the number of microphones, while the number of
parameters in our current parameterization increases with the
square of the number of channels.

We want to show now the utility of the algorithm for auto-
matic speech recognition, at least in a situation in which we ob-
tain reasonably good SIR improvement. We used a commercial
large vocabulary recognizer (IBM's ViaVoice) that was adapted
to the speaker and the same distant-talking microphone used in
the separation experiments. The recognition performance was
estimated on a short text (760 words Wall Street Journal article),
and resulted in a word error rate (WER) of 11.9% in a quiet
office environment. This number represents a lower bound, as
the separation algorithm can at best remove the undesired inter-
ference, and is not designed to undo the room acoustics of the
direct channel. The results shown in Fig. 4 correspond to SIR
improvements between 0 to 10 dB. In almost all instances, the
recognition performance was improved. Actual deterioration is
also possible as there is no guarantee that the resulting separated
signals will not be distorted. Distortion is minimized however
by constraining the direct channels to be unit filters.

Unfortunately, the most realistic case in a practical applica-
tion may be that we have only two microphones available but
a multitude of sources. We have observed that in the presence
of a strong main speech signal, the algorithm will give a good
estimate of the background of multiple sources in one channel.
It will do little, however, to remove the background from the
one main source. This is not surprising as we know from the
beam-forming literature that with two microphones, one can at
best zero one orientation. However, this background estimate
may be useful for further single-channel enhancement.

Another problem to be addressed in practice is that the
channel is typically nonstationary as well. A slight change
in the location or orientation of a source may cause drastic
changes in the response characteristic of a room. A crucial
question therefore is the amount of signal required for any
algorithm to produce a reasonable separation. Earlier results
[29] and current work on an on-line version of this algorithm
suggest that 1–2 s of signal may be sufficient, provided the
channel is easy to invert in a stationary situation.

V. CONCLUSION

A large body of work has accumulated in the last two decades
on the problem of blind source separation. We have concentrated
on the rather general case of recovering convolutive mixtures of
wideband signals with at least as many sensors as sources. The
main contributions of this work are the explicit use of nonsta-
tionarity of the source signals and an efficient solution to the per-
mutation problem of the frequency domain algorithm. Careful
considerations of how to measure second-order statistics in the
frequency domain allow us to obtain a constrained LS cost that
is optimal at the desired solutions. The constraint on the filter
size solves the permutation problem of wideband signals. The
current experimental results suggest that under proper condi-
tions for two channels we can achieve a crosstalk reduction of

Fig. 3. Same simulation as in previous figure with increasing number of
microphones in a 2 m array.

Fig. 4. Word error rate of a large vocabulary, continuous speech recognizer
before and after source separation with the current algorithm (left and right
bars respectively). The experiments were performed in a small conference room
with two cardioid microphones at a sampling rate of 8 KHz. The source of
interference was either a second speaker or music from a single loudspeaker.
Parallel setup: Microphones placed side by side, one pointing mainly toward
the speaker, located at a 150 cm distance, and the second microphone pointing
approximately at the interfering source at a 250 cm distance. Opposite setup:
Speaker and jammer placed on opposite sides of the two microphones, which
also pointed in opposite directions. Speaker and jammer again at 150 cm and
250 cm distance respectively. 1: music, parallel 150 cm; 2: music, parallel 20
cm; 3: music, opposite 45�; 4: music, opposite 180�; 5: speech, parallel 150 cm;
6: speech, parallel 20 cm; 7: speech, opposite 45�; 8: speech, opposite 180�.

up to 14 dB in an office environment. We have demonstrated the
algorithm's utility for automatic speech recognition in presence
of a single source of interference by using two microphones.
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