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ABSTRACT

In this paper we summarize our results for two classes of
hierarchical multi-scale models that exploit contextual in-
formation for detection of structure in mammographic im-
agery. The first model, the hierarchical pyramid neural net-
work (HPNN), is a discriminative model which is capable
of integrating information either coarse-to-fine or fine-to-
coarse for microcalcification and mass detection. The sec-
ond model, the hierarchical image probability (HIP) model,
captures short-range and contextual dependencies through
a combination of coarse-to-fine factoring and a set of hid-
den variables. The HIP model, being a generative model,
has broad utility, and we present results for classification,
synthesis and compression of mammographic mass images.
The two models demonstrate the utility of the hierarchical
multi-scale framework for computer assisted detection and
diagnosis.

1. INTRODUCTION

Robust analysis of imagery, including object detection, recog-
nition and segmentation, often depends on the exploitation
of contextual cues. For image analysis, “context” can be
defined as that which surrounds an object and determines
its meaning. This definition implies that the spatial (and/or
temporal and/or spectral, etc.) neighborhood of an object
plays a major role in its interpretation. Radiologists per-

forming medical image analysis, particularly diagnostic screen-

ing, utilize contextual cues derived from the imagery in their
decision process. The location of suspicious structure rela-
tive to the surrounding anatomy and the appearance of sur-
rounding tissue are just two examples of these contextual
cues that are exploited. Computer-aided diagnosis (CAD)
systems have been developed to assist radiologists in medi-

cal image analysis by providing a low-cost “second-reader”[1].
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An important challenge in CAD is developing systems which
automatically learn to exploit contextual cues to maximize
overall sensitivity and specificity.

We have developed two classes of pattern recognition
models which utilize multi-scale decompositions for learn-
ing contextual dependencies in images. In previous work,
we have presented the details of these two models [2][3].
The first is a discriminative model, called the hierarchical
pyramid neural network (HPNN), that utilizes a multi-resolution
pyramid structure to integrate scale information either coarse-
to-fine or fine-to-coarse, depending on the natural scale of
the object. The second model, termed the hierarchical im-
age probability model (HIP), is a probabilistic generative
model of the image distribution (or features extracted from
the image). Similar to the HPNN, HIP utilizes a multi-
resolution pyramid decomposition to capture both short-range
and long-range dependencies (i.e. context) in the image.
In this short paper we summarize our results for these two
models, particularly as they relate to analysis of mammo-
graphic data.

2. AMULTI-SCALE DISCRIMINATIVE MODEL.:
HPNN

The first model is the hierarchical pyramid neural network
(HPNN). In this paper we summarize our results of applying
the HPNN framework to two problems in mammographic
CAD; that of detecting microcalcifications in mammograms
and that of detecting malignant masses in mammograms. A
more detailed description of the model has been published
elsewhere [2].

Two architectures for the HPNN are illustrated in fig-
ure 1. The coarse-to-fine HPNN architecture is well-suited
for the microcalcification problem, while the fine-to-coarse
HPNN is best suited for mass detection. We evaluate the
performance and utility of the HPNN framework by con-
sidering its effect on reducing false positive rates in a well-
characterized CAD system developed by The University of
Chicago (UofC). In both cases (microcalcification and mass



detection) the HPNN acts as a post-processor of the UofC
CAD system.

Data used for the microcalcification experiments was
provided by The University of Chicago. The first set of
data consists of 50 true positive and 86 false positive re-
gions of interest (ROIs). These ROIs are 99x99 pixels and
digitized at 100micron resolution. A second set of data from
the UofC clinical testing database included 47 true positives
and 103 false positives, also 99x99 and sampled at 100mi-
cron resolution.

We trained the coarse-to-fine HPNN architecture in fig-
ure 1 as a detector for individual calcifications. For each
level in the pyramid a network is trained, beginning with
the network at the lowest resolution. The network at a par-
ticular pyramid level is applied to one pixel at a time in the
image at that resolution, and so produces an output at each
pixel. All of the networks are trained to detect microcalcifi-
cations, however, at low resolutions the microcalcifications
are not directly detectable. To achieve better than chance
performance, the networks at those levels must learn some-
thing about the context in which microcalcifications appear.
To integrate context information with the other features the
outputs of hidden units from low resolution networks are
propagated hierarchically as inputs to networks operating at
higher resolutions.

Input to the neural networks come from an integrated
feature pyramid (IFP)[4]. To construct the IFP, we use steer-
able filters[5] to compute local orientation energy. The steer-
ing properties of these filters enable the direct computation
of the orientation having maximum energy. We construct
features which represent, at each pixel location, the maxi-
mum energy (energy at 8,42 ), the energy at the orientation
perpendicular to 6,4 (@ — 90°), and the energy at the
diagonal (energy at 8,4, — 45°). The resulting features are
input into the coarse-to-fine network hierarchy.

The coarse-to-fine HPNN was applied to each input ROI,
and a probability map was constructed from the output net-
work in the hierarchy. This map represents the network’s
estimate of the probability that a microcalcification is at a
given pixel location. For a given ROI, the probability map
produced by the network was thresholded at a given value to
produce a binary detection map. Region growing was used
to count the number of distinct detected regions. The ROI
was classified as a positive if the number of regions was
greater than or equal to a certain cluster criterion.

ROC results were computed for the HPNN and com-
pared to another neural network that had been used in the
UofC CAD system [6]. The area of the ROC curve (A,) for
the HPNN was AZPNN = 0.94 vs. AY°f¢ = 0.91. In
terms of reduction in false positives, at 100% sensitivity the
HPNN had a false positive rate of 21% vs 43% for the UofC
network. Thus for this dataset, the HPNN had a higher A,
than the UofC network while also halving the false positive

Fig. 1. Coarse-to-fine (left) and fine-to-coarse (right) HPNN
architectures. Large arrow on left shows the direction of
training and processing.

rate. This difference, between the two networks’ A, and
FPF values, is statistically significant (z-test; p4, = .0018,
prpr = .00001).

A second set of data was also tested. 150 ROIs taken
from a clinical prospective study and classified as positive
by the full Chicago CAD system (including the UofC neural
network) were used to test the HPNN. Though the Chicago
CAD system classified all 150 ROIs as positive, only 47
were in fact positive while 103 were negatives. We applied
the HPNN trained on the entire previous data set to this new
set of ROIs. The HPNN was able to reclassify 47/103 neg-
atives as negative, without loss in sensitivity (no false nega-
tives were introduced).

On examining the negative examples rejected by the coarse-
to-fine HPNN, we found that many of these ROIs contained
linear, high-contrast structure that would otherwise be false
positives for the UofC network. One possible reason for this
is that the coarse-to-fine HPNN learns context for the false
positives. The UofC neural network presumably interprets
the "peaks” on the linear structure as calcifications. How-
ever because the coarse-to-fine HPNN also integrates infor-
mation from low resolution it can associate these “peaks”
with linear structure at low resolution and thus determine
that these peaks are not microcalcifications.

Although microcalcifications are an important cue for
malignant masses in mammaograms, they are not visible or
even present in all cases. Thus mammographic CAD sys-
tems include algorithms to directly detect the presence of
masses. We have applied a fine-to-coarse HPNN architec-
ture to detect malignant masses in digitized mammograms.
Radiologists often distinguish malignant from benign masses
based on the detailed shape of the mass border and the pres-
ence of spicules along the border. Thus to integrate this
high-resolution information to detect malignant masses, which
are extended objects, we apply the fine-to-coarse HPNN of
figure 1.

The experimental paradigm is similar to the microcalci-
fication experiments in that we apply the HPNN as a post-



processor to the UofC CAD system for mass detection. The
data in our study consists of 72 positive and 100 negative
ROIs. The negative ROIs are false-positives of the earlier
stages of the CAD system. These are 256-by-256 pixels
and are sampled at 200micron resolution.

At each level of the fine-to-coarse HPNN several hidden
units process the feature images. The outputs of each unit
at all of the positions in an image make up a new feature
image. This is reduced in resolution by the usual pyramid
blur-and-subsample operation to make an input feature im-
age for the network units at the next lower resolution. We
trained the entire fine-to coarse HPNN as one network in-
stead of training a network for each level, one level at a
time. This training is straightforward. Back-propagating er-
ror through the network units is the same as in conventional
networks.

The features input to the fine-to-coarse HPNN are radial
and tangential gradient components at each resolution, rel-
ative to the mass center. The center coordinates are gener-
ated by the earlier stages of the CAD system. The gradients
are generated by first derivative of Gaussian filters. In ad-
dition to the filter outputs, we add the squares of the filter
outputs so the local radial and tangential image energies are
easily available to the network. Unlike the microcalcifica-
tion coarse-to-fine HPNN, we did not reduce these images
in size to all lower resolution pyramid levels. For example,
the gradient features extracted from level 2 in the pyramid
are provided as input only to the hidden units at level 2. In-
formation from this level passes to level 3 only through the
hidden unit outputs. Evaluation of the fine-to-coarse HPNN
system resulted in an A, value on the test set of 0.85 and a
52% reduction in false positive rate of the UofC mass de-
tection system without loss in sensitivity. Thus the HPNN
framework is able to reduce false positive rates of both the
UofC microcalcification and mass detection CAD systems
by approximately 50%

3. AMULTI-SCALE GENERATIVE MODEL: HIP

The second model we describe is a hierarchical image prob-
ability (HIP) model, which is a generative model that ex-
plicitly models the probability distribution of an image (or
image features) for a given class of images. It is beyond
the scope of this paper to describe the details of the HIP
model and we instead refer the reader to [3]. In this pa-
per we briefly describe one of the key aspects of the model,
namely coarse-to-fine factoring of image distributions using
a pyramid representation. We then present results of evalu-
ating HIP within the context of its generative utility, specif-
ically with regard to 1) mammaographic mass classification,
2) synthesis and 3) compression.
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Fig. 2. Structure of the HIP model. Conditioning is shown
with bold arrows while construction of features is shown
with light arrows.

Fig. 3. Mammographic ROI images synthesized from pos-
itive and negative HIP models. Synthesized positive ROIs
(left) tend to have more focal structure, with more defined
borders and higher spatial frequency content. Negative
ROIs (right) tend to be more amorphous with lower spatial
frequency content.

3.1. Coarse-to-fine factoring of image distributions

In developing the HIP model our goal is to write the image
distribution Pr(I) as a product of conditional distributions
in a form similar to Pr(I) ~ Pr(Fo |F1) Pr(Fy|Fs)...,
where F; is the set of feature images at pyramid level I. To
do this consider building a Gaussian pyramid of image I.
From each Gaussian level I; we extract some set of feature
images F; (see figure 2). Sub-sample these feature images
to get the feature images G; so that the images in G; have
the same dimension as J;.;. Denote the set of images {I141
.G} by Gy, and the mapping from I; to G; by G;. If G; is
invertible for all [ we can show that

L—1
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In order to factor Pr(Gy|I;4+1) over positions we intro-
duce hidden variables, of which several different choices
are discussed in[7]. The model, including hidden variables,
can be fit to data using the Expectation-Maximization (EM)
algorithm.
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Fig. 4. Maximum error (L norm) vs. size of compressed
file, JPEG and HIP.

3.2. Classification

We applied HIP to the problem of detecting masses in ROIs
taken from the UofC CAD system for mass detection. We
trained a HIP model on a set of 36 positive examples (ROIs
containing masses) and a second HIP model on 48 negative
examples (ROIs without masses). The likelihood ratio was
used as a test criterion-i.e. a threshold on this ratio is used
to decide which ROIs will be classified as masses. The true
and false positive rates were measured on an independent
test set of 36 positives and 48 negatives. Results show a
reduction in false positive rate of 25% with no loss in sensi-
tivity.

3.3. Synthesis

Since the HIP model is a generative model, we can sample
the model and synthesize new images. In practice, this prop-
erty might be best utilized for image compression or noise
reduction. Within the context of ROI classification, synthe-
sized images can give insight into what features the model
is extracting and representing for both positive and negative
ROIs. Using the same ROI database used for classification,
we constructed HIP models for positives (masses) and neg-
atives (no masses). The trained HIP models were sampled
to synthesize new ROI images. Figure 3 shows examples of
these images. Inspection of the synthesized positive ROIs
shows more focal structure, with more well-defined borders
and higher spatial frequency content than the negative ROIs.

3.4. Compression

Given an image and a HIP model, we compute the most
likely value of each hidden label and code each feature vec-
tor for a given image. Figure 4 shows the maximum errors
versus the size of the resulting compressed file, respectively.
Note that this result is for one randomly-chosen mass ROI
image, which was not part of the training set of the HIP
model. The HIP model gives maximum errors that are lower
than JPEG.

4. CONCLUSION

We have presented two HPNN architectures and results which
demonstrated their ability to reduce false positive rates for
microcalcification and mass detection in mammographic CAD.
A coarse-to-fine HPNN has been directly integrated with
the UofC CAD system for microcalcification detection and
the complete system has undergone clinical evaluation[2].
Recently we have combined the coarse-to-fine and fine-to-
coarse structures into a single generalized framework, al-
lowing for the simultaneous integration of information both
up and down the pyramid structure [2].

The second model presented was the hierarchical image
probability (HIP) model, trained to estimate Pr(Image|Class).
There are several attractive features of the HIP framework
which could have a major impact on the design, and devel-
opment of mammaographic CAD systems. Since HIP com-
putes Pr(Image|Class), we can detect unusual images and
reject them rather than trust the classifier; something that is
not possible with models of Pr(Class|Image). Building
confidence measures into CAD systems is an open area of
research and the HIP model provides a mechanism by which
to generate these measures.
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