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Abstract—We propose a probabilistic generative multi-view
model to test the representational universality of human infor-
mation processing. The model is tested in simulated data and in
a well-established benchmark EEG dataset.
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I. INTRODUCTION
We are interested in how the human brain solves com-

putational problems such as decoding high level information
from given natural stimulus such as e.g. watching a movie.
Assuming that the movie brain interaction is jointly optimized
we expect a certain amount of universality in the representa-
tions and processes used in the brains of subjects watching
a given movie. Neuroscience based on movie stimulus has
been pursued by Hasson et al. see e.g. [1]. They introduced a
correlation approach between anatomically aligned brains. This
is based on a rather strong assumption of universality, namely
that both the extracted information (what) and representations
(where) are shared among subjects. To exploit the full spatio-
temporal patterns of correlation and increase sensitivity, a
multivariate version of this approach, so-called correlated
component analysis (here abbreviated CorrCA) was recently
proposed by Dmochowski et al. [2]. Within the multivariate
framework, a natural relaxation of the strong universality
hypothesis, would be to let decoded content (what) be iden-
tical between subjects, while their representations, hence, the
’where’ be more individual. Such an approach corresponds
to analysis by the multivariate technique known as canonical
correlation analysis (CCA) [3]. In CCA we search for individ-
ual stationary spatial networks with similar temporal activation
among subjects. A model incorporating temporal structure and
including both joint and individual signal components was
developed by Lukic et al. [4]. A probabilistic approach to
CCA also including the possibility of both joint and individual
components was proposed by Klami et al. [5].
Here we will analyze a probabilistic model inspired by the

work of Dmochowski et al. [2], however, with the possibility
of learning the degree of universality from data. The latter
is implemented in hierarchical Bayesian approach that allows
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variable degree of non-universality of representations (where)
in individual subjects. We illustrate the performance and our
approximate inference procedures in both simulation studies
and in a benchmark EEG set. The specific contributions of this
work are: 1) Formulation of a generative model and inference
for Bayesian correlated component analysis (BCorrCA); 2) A
principled scheme for inference of correlated components more
than two simultaneous subjects; 3) Validation on simulated
data and benchmark EEG data.

II. FINDING CORRELATED COMPONENTS THROUGH
EIGENVALUE DECOMPOSITION

We first briefly review the two existing multivariate ap-
proaches both of which are derived for two view data
sets. Given two multivariate spatio-temporal datasets, X(1) ∈
R

D1×N and X(2) ∈ R
D2×N , with {D1, D2} defining the

number of measured features and N the number of time
samples, CCA seeks to estimate weights, {W(1),W(2)}, which
maximise the correlation between y1 = X(1)Tw(1)

k and y2 =

X(2)Tw(2)
k . At the same time CCA constrains the estimated

weights with the condition that X(1)Tw(1)
k and X(1)Tw(1)

k′ are
uncorrelated for k �= k ′ [5]. Introducing the sample covariance
matrix, Rij =

1
NX

(i)X(j)T , CCA finds the weights analytically
through eigenvalue decompositions [3]

R−1
11 R12R−1

22 R21w(1) = ρ1w(1) (1)
R−1

22 R21R−1
11 R12w(2) = ρ1w(2).

where ρ is an eigenvalue of the system. Correlated component
analysis (CorrCA) is a related approach with the additional
constraint of a single set of weights that works for filtering
both data sets. This stronger universality assumptions can also
benefit from fewer degrees of freedom. Furthermore it does not
require the somewhat artificial orthogonality between weights,
which is less meaningful in, e.g., EEG where the weights
are spatial networks [2]. In correlated component analysis
the weights are thus estimated through a single eigenvalue
decomposition [2],

(R11 + R22)
−1 (R12 + R21)w = ρ2w. (2)

In an extended version of this work in preparation, we discuss
the robustness of CorrCA to variability in subject weights.978-1-4799-4149-0/14/$31.00 c©2014 IEEE



III. PROBABILISTIC CORRELATED COMPONENT
ANALYSIS

Inspired by the probabilistic principal component analysis
introduced by [6], an approach to CCA was presented in
[7] using latent variables. They formulated a probabilistic
generative model based on Gaussian distributed common
sources, z ∼ N (0, I), mixed to form two noisy observed
datasets, x(m) ∼ N

(
A(m)z,Φ(m)

)
, for m = {1, 2}, with

Φ(m) representing the covariance matrix for the observation
noise of dataset m. A(m) ∈ R

D×K signifies the mixing
matrix1, where each of the K columns represents the mixing
of one source. To avoid discrete model selection in the related
case of probabilistic PCA [8] introduced automatic relevance
determination (ARD), with a Gaussian distribution for each
column in the mixing matrix, A(m) ∼ ∏K

k N
(
A(m)

k |0, α−1
k

)
,

which are regulated by the gamma distributed hyperparameter,
α ∼ ∏K

k Ga(αk|a0, b0).
These methods to probabilistic PCA and CCA has lead to

different approaches to a Bayesian CCA e.g. [5], [10], [11] and
group factor analysis (GFA) [12], the first practical multi-view
generalization of Bayesian CCA. The novelty in these methods
is mainly related to how they approximate the posterior distri-
bution for the latent sources, using a full Bayesian treatment
most employ variants of variational inference, an approach we
also follow here.
Variational inference approximates the posterior distribu-

tion by a completely factorised variational distribution which
is then optimized to match the posterior typically using the
Kullback-Leibler divergence as a measure of the dissimilarity.
The resulting algorithm consists of updating the lower bound
with respect to each variable in turn such as expectation max-
imisation. In this setting the distributions from the exponential
family often simplifies computation and provides for conjugate
relationships between the prior and posterior distributions [13],
[14].
The Bayesian correlated component analysis (BCorrCA)

model proposed here introduces a relationship between the
mixing matrices of the views, by including the common latent
variable, U, representing the mean mixing matrix across all
datasets and the ARD variable λ which tunes how close the
individual A(m)’s are to U;

U ∼
K∏
k

N (
vk|0, α−1

k

)
(3)

A ∼
M∏
m

K∏
k

N
(
a(m)
k |uk, λ−1

)
, for M ≥ 2 (4)

λ ∼ Ga(a0, b0) (5)

The attained updates are similar to the ones obtained in
[10], with added regularisation of the mixing matrices, A, by
λ and U. The result is an algorithm, which can implement both
independent mixing matrices as in CCA (with a small λ), or
completely aligned matrices as in CorrCA (with a large λ).
Importantly it generalises in a straightforward manner to an

1Authors use different letters for the mixing matrix. Most Bayesian models
use the notation W, probably stemming from [8], but as this letter is also used
to define the demixing matrix, we choose here to use A as employed in [9].
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Fig. 1: Estimation of the similarity between the mixing matrices in simulated
data with different number of views. The opaque area marks the standard error
of the mean. The similarity is regulated through the parameter λ, and estimated
using BCorrCA. The simulations were conducted with a single hidden source,
100 repetitions and a SNR of 3.

arbitrary number of parallel data views.

IV. PERFORMANCE ON SIMULATED DATA
Simulation Design
To validate and quantify the performance of BCorrCA, data
was generated with a varying similarity between the mixing
matrices by changing the ’true’ λ. From the model definition
we get that X(m) = A(m)

true Z+ ε with ε ∼ N (0, σ2
ε ), where σ2

ε
is varied to obtain the desired signal-to-noise ratio (SNR). Z is
a K ×N source matrix containing K time series. The mixing
matrix is generated by A(m)

true = U+δ(m), with U ∼ N (0,α−1)
and δ(m) ∼ N (0, λ−1).
We have used up to four hidden sources, generated as in [5],

for direct comparability with this work. Here we will mainly
focus on the simple case of one hidden source corresponding
to the data being generated from one sinusoid and additive
noise, a more elaborate investigation pending a detailed report.
For comparative analysis and benchmarking, the performances
of BCorrCA, CorrCA, CCA, and GFA were estimated on the
same data. For each combination of conditions either 20 or 100
datasets were randomly generated and the average correlation
coefficient between the inferred source and the true source was
chosen as the measure of performance.
CorrCA and CCA are designed to handle two views at a

time. In case of multiple views we employed the scheme for
combination proposed in [2], i.e., the views are concatenated
in time so that all pairwise combinations are compared. This
method has the disadvantage that the number of samples in
the concatenated data scales as M(M − 1). The algorithms
were tested at varying levels of SNR, number of views, M ,
and similarity between the true mixing matrices of each view.
In each test the data had six dimensions and the number of
observations was set to 500. When varying the number of
views we used a total of 5,000 samples divided equally among
the views.
Results
Figure 1 presents the results of simulations to test that
BCorrCA can infer the correct level of view similarity (λ).
Here the similarity between the true mixing matrices is varied
by the ’true’ λ parameter. It is seen that BCorrCA is in fact able
to estimate this parameter’s variation through the entire range.
We find a small tendency to overestimate, which might stem
from an interaction with the other ARD parameter, α, and an



(a) M = 2 (b) M = 5

Fig. 2: Performance of BCorrCA, GFA, CorrCA and CCA on simulated data measured by mean correlation coefficient and standard
error of the mean with respect to the true source. In both subfigures the performance is tested under different levels of SNR, with either
2 or 5 views and 20 repetitions. The true weights are nearly equal in (a) with λ = 103 and dissimilar in (b) with λ = 103.

interaction with the number of views that is most pronounced
when having only one hidden source.
The results from the tests on the simulated data can

be seen in figure 2. We find that for high SNR levels all
algorithms perform similar, but as the noise levels increase
the latent models quickly drop towards zero correlation though
BCorrCA do so less steeply and can perform at lower levels
of SNR compared to GFA. This quick drop is caused by the
Bayesian model’s affinity to bias, hence to choose a ’zero-
source’ solution as the cost of a poor estimation gets too high.
More aggressive priors could relieve this issue.
Figure 2 also shows how performance improves as the

number of available views increases. We see that CCA and
CorrCA actually perform worse, when the number of views in-
crease and their mixing matrices are non-equal. With identical
’true’ matrices the algorithms perform the same as BCorrCA.
The increased performance stems from having more instances
of the signal and then be able to average out noise. For
the latent variable models two things are evident: BCorrCA
outperforms GFA at low SNR and increasing the number of
views is beneficial, as it increases the correlation with the true
source even though the number of observations do not increase.
Increasing the number of hidden sources to four decreased

the mean correlation but did not change the relative perfor-
mance between the algorithms, except for GFA, which had a
performance closer to that of BCorrCA.

V. VALIDATION ON BENCHMARK EEG FROM AN
AUDIO-VISUAL SELECTIVE ATTENTION TASK

For the purpose of evaluating the algorithm on real EEG,
we use a well-documented dataset from the auditory-visual
attention shift study by the Swartz Center [15].
Experimental design
The paradigm was designed to test the effect of ageing on neural
responses of the auditory and visual stimuli. The auditory stimuli
were 100-ms duration 550-Hz (target) and 500-Hz (non-target)
sine-wave tones and the visual stimuli were light-blue (target)
and dark-blue (non-target) filled squares presented for 100 ms on
a light-grey background. During the experiment the subject was
notified to either attend to visual or auditory stimuli and press a
button when detecting a relevant target.

Pre-processing
The continuous EEG was recorded from 33 channels of the
international 10-20 system at 250 Hz from 49 subjects (5 discarded
for missing events). The EEG was re-referenced to the left mastoid
and segmented into response-locked epochs with 200 ms pre- and
900 ms post-response time. Epochs with values higher than 70μV
or exceeding 5 standard deviations were automatically rejected to
remove eye artefacts and electrical drift. The remaining epochs
were bandpass filtered using a windowed sinc-filter with passband
frequencies 0.1-40 Hz and baseline-corrected in relation to the 200
ms pre-response interval. The ”infomax” ICA algorithm [16] was
then used on the concatenated epochs to find the de-mixing matrix
and isolate independent components containing eye artefacts. The
”fully” automatic algorithm ADJUST [17] was used to identify noisy
components which were then conservatively inspected manually and
removed from the EEG. The EEG was then normalised with respect
to its total power.

Finding correlated components
Because BCorrCA is sensitive to temporal misalignment the
views used in this test was chosen based on the correlation
between the averaged ERP of channel P3 for view 8 and
the rest of the views. The six views with highest correlation
(including self) were chosen and cropped to contain the same
number of epochs (n=394). To test the reliability of the
algorithm 100 epochs were randomly drawn from each view
and concatenated to create 6 views of ”continuous” EEG to be
analysed in BCorrCA. The procedure was repeated 100 times
in order to compute mean and standard error of the mean.
Results
The variance of and difference between view-specific filters
represents an estimate of the similarity between these. The
same applies to the time series components but the algorithm
only computes a common component for all the views, how-
ever, by constructing the backward model filters,W, the view-
specific components can be found by z(m) = w(m)TX(m).
In table I we see that the average within-view variance for
both filters and time series are significantly larger than the
average between-view variance which suggests a high amount
of universality in the neural representations. The same is
illustrated in figure 3 by the relatively small standard deviation
(mesh) compared to the average filter. Figure 4 shows in the
small error a high level of reliability for both methods but the
neural response is represented much stronger in BCorrCA.



Fig. 3: Grand average filter projection and standard error (mesh). The filter is
illustrated both as a 2- and 3-dimensional structure to show the between-view
variation. Positive weights are located in the parieto-occipital region

TABLE I: Variance of time series components and filters

Within-view Between-view
Filters 0.046 0.018

Time series 0.095 0.010

VI. DISCUSSION AND CONCLUSION
During the past decade research in social neuroscience

has shifted from being inherently single person studies of
people observing others towards multi-way interaction between
multiple persons [18], which calls for methods that are able
to adapt to the level of universality in neural representations
across brains.
The probabilistic implementation of correlated component

analysis presented here provides a new approach to the extrac-
tion of shared representations and information. Tests on arti-
ficial data showed that multiple views improve the extraction
of shared signals, even when the total amount of observations
were kept the same. Direct inference of shared response in
the face of intersubject variability of representation enables
new methods for analysis in experiments with simultaneous
stimulation of groups of subjects. Instead of analysing pairwise
correlations of subject response the methods proposed here
allow us to infer correlated attention and other joint activity
in large cohorts. Our analysis of the auditory-visual attention
shift EEG dataset showed the expected response post-motor
potential following the key press and the response is markedly
stronger using BCorrCA compared to GFA. In Table I we list
the total variation within and between subjects (views). Note,
the within subject variability (i.e., variability across electrode
weights) is larger than the between subject variability. The
estimated response time course is highly universal for the
subjects entering the analysis.
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