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Chapter 18

ICA and biomedical

applications
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Kachenoura, L. Senhadji

In this chapter we focus on the use of Independent Component Analysis (ICA) in
biomedical systems. Several studies dealing with ICA-based biomedical systems
have been reported during the last decade. Nevertheless, most of these studies
have only explored a limited number of ICA methods, namely SOBI [7], FastICA
[39] and InfoMax [53]. In addition, the performance of ICA algorithms for
arbitrary electro-physiological sources is still almost unknown. This prevents us
from choosing the best method for a given application, and may limit the role
of these methods in biomedical systems.

To overcome these limitations, the purpose of our study is first to show the
interest of ICA in biomedical applications such as the analysis of human electro-
physiological signals. Next, we aim at studying twelve of the most widespread
ICA techniques in the signal processing community and identify those that are
most appropriate for biomedical signals.

18.1 Introduction

The previous chapters presented various categories of algorithms to perform
ICA. The main difference between the various methods lies in their approach
for measuring statistical independence between random variables. One group of
algorithms such as InfoMax [35], FastICA [38] or PICA [48] measure indepen-
dence using Mutual Information (MI), which is directly related to the definition
of independence via the Kullback-Leibler divergence [6]. Alternatively, algo-
rithms use the normalized Differential Entropy (DE), which is a special distance
to normality also referred to as negentropy (see chapter 3 page 102 or chapter 6
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page 203 for a brief description). More precisely, the InfoMax method solves the
ICA problem by maximizing the DE of the output of an invertible non-linear
transform of the expected sources using the natural gradient algorithm [35] (see
chapter 6 for more details). The PICA algorithm uses the parametric Pearson
model in the score function in order to minimize the MI. Using either a deflation
or a simultaneous optimization scheme, FastICA extracts each component by
maximizing an approximation of the DE of the expected source by means of
an approximate Newton iteration (which actually often reduces to a fixed-step
gradient, as shown in section 6.10.4).

Another group of algorithms measure independence indirectly via cumu-
lants which are easier to compute [59, 3, 2, 49] (see chapter 3). These statistical
measures are very useful to build a good optimization criterion, referred to as
contrast [19, definition 5]. This comes essentially from two important proper-
ties: i) if at least two components or groups of components are statistically
independent, then all cross-cumulants involving these components are zero and
ii) if a variable is Gaussian, then all its High Order (HO) cumulants are zero.
Note that cross-cumulants share two other useful properties. For real-valued
random variables they are symmetric matrices since the value of their entries
does not change with the permutation of their indices, and they satisfy the
multi-linearity property [59] (see also chapter 9 page 357).

Thus, numerous cumulant-based techniques were proposed such as JADE
[10, 11], COM2 [18, 19], COM1 [21, 20], SOBI in both conventional [7] and
robust whitening [105] versions, STOTD [52], SOBIUM [51], TFBSS [36, 30]
and FOBIUMACDC. For more detailed description, one can refer to chapter 5
for methods COM2, JADE and STOTD, to chapter 7 for the SOBI algorithm, to
chapter 9 for the SOBIUM method and to chapter 11 for the TFBSS approach.
In the SOBI and TFBSS algorithms, ICA is solved by jointly diagonalizing
several Second Order (SO) cumulant matrices, say covariance matrices, well-
chosen in the time and the time-frequency planes, respectively. Also based on
SO cumulants, the SOBIUM algorithm extends the SOBI concept to the case
of under-determined mixtures (i.e. more sources than sensors). Regarding the
FOBIUMACDC method, it is based on a non-orthogonal joint diagonalization of
several Fourth Order (FO) cumulant matrices, well-known as quadricovariance
matrices, using the diagonalization ACDC scheme [100].

It is noteworthy that the FOBIUMACDC method is a variant of FOBIUM
[29], which has the advantage of processing both sub- and super-Gaussian
sources. As far as the COM2 method is concerned, a maximization of a FO
contrast function is used to extract independent components . In addition, the
JADE algorithm [10] solves the ICA problem by jointly diagonalizing a set of
eigenmatrices of the quadricovariance matrix of the whitened data. Following
the same spirit as the JADE algorithm, STOTD [52] jointly diagonalizes third
order slices extracted from the FO cumulant array of the whitened data.

We stress out that, a good performance of each technique is subject to some
specifique conditions or assumptions on the processed sources and the additive
noise. For instance some methods require sources to be colored (i.e. temporarily
correlated); others do not allow Gaussian noise with unknown spatial coherence,
etc. Figure 18.1 sheds light on the essential hypothesis for each method consid-
ered in this chapter, and for which a good behavior is guaranteed.

This specific chapter aims at giving some insights into the numerical com-
plexity of many of these ICA algorithms. In addition, it will give a compara-
tive performance analysis based on simulated signals in electro-encephalography.
Hopefully this chapter would provide useful reference for researchers from the
biomedical community, especially for those who are not familiar with ICA tech-
niques.
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Figure 18.1: Twelve ICA methods with their main characteristics

18.2 One decade of ICA-based biomedical data

processing

Advances in data recordings technologies and digital signal processing have en-
abled recordings and analysis of vast amounts of multidimensional biomedical
data. The extraction of the essential features from the data becomes therefore
paramount. The use of ICA in biomedical systems is now very widespread since
the ICA concept is very easy to understand: it decomposes the data as a lin-
ear combination of statistically independent components. However, biomedical
signals pose a challenge as it is often difficult to ascertain a ground truth that
could be used to evaluate the accuracy of the ICA decomposition, or even its
meaning. The following questions therefore deserve careful consideration: Can
the data be modeled as a linear combination of physically independent random
processes? Are there a fixed and known number of such independent processes?
Do they represent independent source signals or more generally independent
source subspaces? The answers to these questions are not simple and thus the
results of ICA for biomedical signals requires often a significant level of interpre-
tation and expert knowledge. This section will survey biomedical applications
where ICA plays a central role to provide an overview of the assumptions and
motivations for its use.

18.2.1 Electromagnetic recordings for functional brain imag-

ing

As explained in [4], functional brain imaging is a relatively new and multidis-
ciplinary research field that encompasses techniques devoted to a better un-
derstanding of the human brain through noninvasive imaging of the electro-
physiological, hemodynamic, metabolic, and neurochemical processes that un-
derlie normal and pathological brain function. These imaging techniques are
powerful tools for studying neural processes in the normal working brain. Clini-
cal applications include improved understanding and treatment of serious neuro-
logical and neuropsychological disorders such as intractable epilepsy, schizophre-
nia, depression, Parkinson’s disease and Alzheimer’s disease. Due to the unsur-
passed temporal resolution of electro-encephalography (EEG) and magneto-
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encephalography (MEG) , and to their widespread use by clinicians and scien-
tists, we decided to focus on these both functional brain imaging tools.

EEG and MEG are two complementary techniques that measure, respec-
tively, the scalp electric potentials and the magnetic fields outside the head
produced by currents in neural cell assemblies (figure 18.2). They directly mea-

Figure 18.2: Left: Excitatory postsynaptic potentials (EPSPs) are generated at
the apical dendritic tree of a cortical pyramidal cell and trigger the generation
of a current that flows through the volume conductor from the non-excited
membrane of the soma and basal dendrites to the apical dendritic tree sustaining
the EPSPs. Some of the current takes the shortest route between the source and
the sink by traveling within the dendritic trunk (primary current in blue), while
conservation of electric charges imposes that the current loop be closed with
extracellular currents flowing even through the most distant part of the volume
conductor (secondary currents in red). Center: Large cortical pyramidal nerve
cells are organized in macro-assemblies with their dendrites normally oriented
to the local cortical surface. This spatial arrangement and the simultaneous
activation of a large population of these cells contribute to the spatio-temporal
superposition of the elemental activity of every cell, resulting in a current flow
that generates detectable EEG and MEG signals. Right: Functional networks
made of these cortical cell assemblies and distributed at possibly multiple brain
locations are thus the putative main generators of MEG and EEG signals. From
[4] with permission.

sure electrical brain activity and allow for studies of the dynamics of neural
networks or cell assemblies that occur at typical time scales on the order of
tens of milliseconds as shown in figure 18.3. EEG was born in 1924 when the
German physician Hans Berger first measured traces of brain electrical activity
in humans. Although today’s electronics and software for EEG analysis benefit
from the most recent technological developments, the basic principle remains
unchanged from Berger’s time. EEG consists of measurements of a set of elec-
tric potential differences between pairs of scalp electrodes. The sensors may be
either directly glued to the skin (for prolonged clinical observation) at selected
locations directly above cortical regions of interest or fitted in an elastic cap
for rapid attachment with near uniform coverage of the entire scalp. Research
protocols can use up to 256 electrodes. In many clinical and research appli-
cations, EEG data are analyzed using pattern analysis methods to associate
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Figure 18.3: Typical scalp magnetic fields are on the order of a 10 billionth
of the earth’s magnetic field. MEG fields are measured inside a magnetically
shielded room for protection against higher-frequency electromagnetic pertur-
bations (left). MEG sensors use low-temperature electronics cooled by liquid
helium (upper right) stored in a Dewar (left and upper right). Scalp magnetic
fields are then recorded typically every millisecond. The resulting data can
be visualized as time-evolving scalp magnetic field topographies (lower right).
These plots display the time series of the recorded magnetic fields interpolated
between sensor locations on the subject’s scalp surface. This MEG recording
was acquired as the subject moved his finger at time 0 (time relative to move-
ment (t=0) is indicated in ms above every topography). Data indicate early
motor preparation prior to the movement onset before peaking at about 20 ms
after movement onset. From [4] with permission.

characteristic differences in the data with differences in patient populations or
experimental paradigm. Typical EEG scalp voltages are on the order of tens of
microvolts and thus readily measured using relatively low-cost scalp electrodes
and high-impedance high-gain amplifiers.

In contrast, characteristic magnetic fields produced by neural currents are
extraordinarily weak, on the order of several tens of femtoTeslas, thus necessi-
tating sophisticated sensing technology. MEG was developed in physics labora-
tories and especially in low-temperature and superconductivity research groups.
In the late 1960s, Zimmerman co-invented the SQUID (Superconducting QUan-
tum Interference Device)−a supremely sensitive amplifier that has since found
applications ranging from airborne submarine sensing to the detection of gravi-
tational waves−and conducted the first human magnetocardiogram experiment
using a SQUID sensor at MIT. SQUIDs can be used to detect and quantify
minute changes in the magnetic flux through magnetometer coils in a supercon-
ducting environment. Cohen, also at MIT, made the first MEG recording a few
years later [17]. Recent developments include whole-head sensor arrays for the
monitoring of brain magnetic fields at typically 100 to 300 locations.

To our knowledge, Makeig et al. [56] and Vigario [89] were the first to
apply ICA to EEG data. Now ICA is widely used in the EEG/MEG research
community [56, 89, 90, 93, 92, 84, 85, 94, 65, 31, 69, 37, 47, 91, 22, 47, 40, 43,
45, 44, 41, 25, 57, 63]. Applications of ICA mainly include artifact detection
and removal [85, 65, 69, 37, 40, 43, 45, 44, 92, 41, 89], analysis of event-related
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Figure 18.4: Some surface electrical activities recorded by a few EEG electrodes,
derived from the standardized 10-20 system, and an ECG sensor.

response averages [92, 56, 45, 44, 57], and single-trial EEG/MEG [84, 45, 25,
63]. In order to illustrate more precisely the use of ICA, two applications are
discussed in the sequel. The latter are devoted to the denoising problem in EEG
and MEG, respectively. Such a problem plays an important role in the analysis
of electromagnetic recordings.

Indeed, the signals of interest are very often recorded in the presence of noise
signals, which can be decomposed into the sum of internal and external noises.
The external noise is the instrumentation noise. The internal “noise” comprises
all normal physiological activity that may generate electrical currents but that
is not of interest to a specific study. A common example of physiological noise
is the activity elicited by movements of the eyes and eye blinks [89]. Similarly,
jaw-muscle activity caused by chewing or talking leads to large broad-band
signals that overshadow the more subtle brain signals. Figure 18.4 displays
a few channels of EEG signals contaminated by such artifacts – the naming
convention for the different channels is based on the standardized 10-20 system
(figure 18.19). The cardiac cycle, as well as contamination coming from a digital
watch (see [91, figure 3]), can also disturb the EEG/MEG signals of interest.

Choosing an inactive voltage reference for recording is one of the oldest tech-
nical problems in EEG. Since commonly used cephalic references contaminate
EEG and can lead to misinterpretation, the elimination of the reference contri-
bution is of fundamental interest. That is the purpose of the work presented
in [37] by applying ICA to interictal recordings. In fact, the classical EEG
recording techniques may complicate the extraction of accurate information.
For instance, in coherence analysis the presence of a common reference signal
in EEG recordings results in a distortion of the synchrony values observed and
may destroy the intended physical interpretation of phase synchrony [78, 34].

Other montages such as bipolar EEG, average common reference EEG and
Laplacian EEG can be used in order to obtain reference-free EEG. But all of
them also present strong drawbacks. The bipolar EEG, obtained by subtracting
the potentials of two nearby electrodes, will remove all signals common to the
two channels, including the common reference but also information from dipoles
with certain locations and tangential orientations. The average reference EEG,
obtained by subtracting the average of all recording electrodes (i.e. the average
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reference) from each channel does not suit the classical 10− 20 system coverage
[46, 34] and would need a denser coverage of the head surface [46] to be really
efficient. Eventually, Laplacian maps, based on the second spatial derivative in
an attempt to remove non-local contributions to the potential, eliminate all the
distributed sources regardless whether or not they originate from the reference
and are biased toward superficial, radial sources. In addition, the three latter
techniques can also lead to misinterpretation of the synchronization results.

In order to overcome the drawbacks of the classical methods, Hu et al. pro-
posed to use ICA for identification and removal of the reference signal contri-
bution from intracranial EEG (iEEG) recorded with a scalp reference signal.
All EEG potential measurements reflect the difference between two potentials,
and can then be factorized as a static mixture of two source subspaces corre-
sponding to the reference signal and signals of interest, respectively. The former
subspace is 1-dimensional by definition, while the latter subspace may have a
higher dimension. As far as the statistical independence between both subspaces
is concerned, as mentioned by the authors, it should at least be approximately
true because of the high resistivity of the skull between scalp electrode and
intracranial electrodes. Then the FastICA method is used in order to auto-
matically extract the scalp reference signal based on its independence with the
bipolar iEEG data. When iEEG and scalp EEG (figure 18.5(a)) are recorded
simultaneously using the same scalp reference, the scalp reference signal R2 ex-
tracted by ICA from iEEG can also be used in order to clean the scalp EEG.
The results of the latter procedure are displayed in figure 18.5(c) in comparison
with other techniques such as bipolar scalp EEG (figure 18.5(b)) and average
reference scalp EEG (figure 18.5(d)). The R2 corrected EEG is clearly advan-
tageous over the average reference corrected. The average reference corrected
EEG in this case has removed the diffuse cerebral activity that remains evident
in the R2 corrected EEG. The R2 corrected EEG is also advantageous over the
bipolar EEG because the bipolar EEG usually leads to smaller amplitudes (see
for instance F7-T7 in figure 18.5(c) and F7 and T7 in figure 18.5(b)) and causes
misinterpretation of EEG.

MEG is useful in preparation of epilepsy surgery in order to localize current
dipoles from surface epileptic spikes allowing for cortex mapping and intracra-
nial electrodes placement. As a result, several approaches for epileptic spike
detection were proposed such as morphological analysis, template matching,
predictive filtering and ICA analysis (see [65] and the references therein). In
practice these techniques have various limitations. For instance, methods based
on morphological analysis and template matching do not take into account the
spatial structure of the measurements since they were developed for single chan-
nel data [65]. Predictive filtering techniques are less appropriate for MEG data
since they were basically proposed for EEG recordings well-known to have a
better SNR [65].

Now concerning spike detection techniques, the majority of them requires vi-
sual inspection or interpretation of independent components and manual cluster
analysis to discard spurious sources [65]. In order to overcome these drawbacks,
Ossadtchi et al. proposed the use of ICA in a fully automated way [65]. It is
noteworthy that the latter authors jointly identify the epileptic spikes and the
corresponding current dipole positions in an efficient way.

First, an ICA analysis via the InfoMax algorithm [35] is used to recover the
spike-like components from MEG measurements assumed to correspond to a
noisy static mixture of two statistically independent source subspaces, say, focal
epileptic and background activity sources interfered with a spatially indepen-
dent instrumentation noise. The static mixture assumption is justified by the
quasistatic electromagnetic properties of MEG data. In our opinion, the inde-
pendence assumption between the three classes of signals holds true in practice
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�d) Average reference scalp EEG

Figure 18.5: Removal of the reference contribution from scalp EEG recorded
simultaneously with iEEG using the same scalp reference. (a) A 10-s sample of
scalp EEG recorded simultaneously with iEEG using the same scalp reference.
The segment is remarkable for the large muscle artifact due to the patient chew-
ing between 5 s and 10 s. (b) Bipolar scalp EEG is created by subtracting the
EEG signal from adjacent electrodes. This demonstrates that in this case the
muscle artifact is not only from the common scalp reference. (c) The corrected
scalp EEG using R2 to remove the reference contribution. (d) The scalp EEG
obtained using the average scalp reference. From [37] with permission.
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Figure 18.6: Manual (yellow square dots) and automated (circles) detection and
clustering results for one subject. From [65] with permission.

due to i) the macroscopic desynchronization between the neurons contributing
to the epileptic spikes and those contributing to the background activity, and ii)
the physical independence between intracerebral activities and instrumentation
noise.

Second, a spikyness index is used to select the components with spike-like
characteristics among all those extracted by InfoMax and only the most spiky
sources are retained in order to reconstruct a denoised epileptic surface of MEG
data. Then, a focal neuronal source localization step is realized on these new
surface data by means of the RAP-MUSIC algorithm [62] where the current
dipole model is fitted in the vicinity of each previously detected spike (i.e. with
a temporal window of size 16 ms). As a result, the retained spiky sources
are those that fit a current dipole with more than 95%. Next, a clustering
procedure is applied on all localized dipoles in order to reduce the number of
detected spiky sources. The retained sources are those falling within one of
clusters automatically determined using a distance metric taking into account
both the location and the time courses of the considered sources. Finally, a
cluster significance step based on a statistical test is used to refine the results
by excluding all non statistically significant clusters among all those defined in
the previous step. This elaborate process is a good example of the type of expert
knowledge that is sometimes required when interpreting the results of ICA on
biomedical signals.

The proposed method showed similar performance in terms of abnormal ac-
tivity detection compared to the one using the conventional four phases clinical
procedure performed on four subjects requiring invasive electrode recordings
for localization of the seizure origin for surgical planning. For one of the four
considered subjects, figure 18.6 shows the performance of the proposed method
(circles) for both abnormal spike activity detection and its spatial location de-
termination. Reported results were compared to a manual detection performed
by a qualified examiner (yellow square dots) [65]. Probable epileptogenic clus-
ters were referred by circles with thicker lines while thinner lines indicate non-
epileptogenic clusters as determined by their location and averaged time courses.
On the other hand, in order to evaluate the necessity of spatial and temporal
investigation of putative clusters of localized sources during the clustering step,
two different clusters were studied in figures 18.7 and 18.8, respectively. Figure
18.7 shows the average time course of dipoles localized in the temporal lobe.
Due to its spike-like shape, the investigated cluster was retained as a result.
But, the inspection of the average time course of the second cluster in figure
18.8 shows a less-descriptive spike-like characteristic, hence its elimination.
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Figure 18.7: Location in three orthogonal views of an apparent dipole cluster
(cluster 1) found for one subject. This cluster was retained by the method since
its average time course represents a potentially epileptogenic region. From [65]
with permission.

18.2.2 Electrocardiogram signal analysis

The electrocardiogram (ECG) reflects the electrical activity of the heart which
is usually recorded with surface electrodes placed on the chest, arms and limbs.
A typical ECG signal of a normal heartbeat (figure 18.9) is composed by a series
of waves, namely, the P-wave which describes the sequential depolarization of
the right and the left atria, the QRS complex is related to the depolarization of
the right and the left ventricles and the T-wave is generated by the ventricular
repolarization [79]. In clinical practice, there are many systems to ECG signal
acquisition [97, 79]. The standard 12-lead ECG seems to be the most widely
used by the physicians especially when waveform morphology is required. It is
obtained by placing two electrodes on the two hands (VR and VL), one electrode
on the left foot (VF) and six precordial electrodes (V1 to V6). The positions
of the nine electrodes are typically chosen to capture the electric activity of the
heart from different angles reconstructing the spatial dynamics of the heart’s
electrical activity. Although the ECG recording techniques are very effective,
the distortions caused by noises and artifacts are still very significant. Indeed,
in many practical situations, the ECG signal is contaminated by different types
of noises and artifacts, such as sinusoidal 50/60 Hz power-line, electrode move-
ments and broken wire contacts, but also interfering physiological signals as
those related to muscle movements and breathing. In addition, some arrhyth-
mias may caused various disturbances in the regular rhythm of the heart and
thus generate ECG waves which are very different from those of the normal
heartbeats. Hence, the main objective in ECG signal analysis is two-fold: i) to
denoise the ECG signal in order to enhance the SNR of the signals of interest
and ii) to separate the different bioelectric sources of the heart, such as ven-
tricular activity (VA) and atrial activity (AA), in order to characterize some
specific arrhythmias.

Several approaches to ECG analysis have been reported such as linear noise
filtering [71], adaptive filtering [96, 83, 86], neural network [99, 87] and wavelet
transform [77]. The majority of these methods have various drawbacks. Cardiac
signal often overlap with various sources of noises and artifacts in time and fre-
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Figure 18.8: Location in three orthogonal views of an apparent dipole cluster
(cluster 2) found for the same subject presented in figure 18.7. This cluster was
discarded by the method since its average time course does not match with the
an epileptogenic region activity. From [65] with permission.

quency domain. Thus extracting the signal of interest may be a difficult task.
In addition, as noted in chapter 16, some of these methods usually need the
use of reference signals, which make their performance highly dependent on the
reference electrode positions. Due to these limitations, reliable signal processing
tools for signal enhancement, detection and noise reduction are crucial for car-
diac diagnosis and therapy. In contrast to the methods mentioned above, ICA
has the potential of extracting signal sources even if they are superimposed in
time-frequency. Moreover, ICA can estimate the sources by taking into account
their spatio-temporal correlation, physiological prior information and their mu-
tual statistical independence. Therefore, it appears natural to consider ICA
techniques as a potential tool for ECG analysis. ICA has been applied to ECG
with various purposes. These include artifact and noise removal [98, 5, 82, 14],
analysis of the autonomic control of the heart [88], ventricular arrhythmia detec-
tion and classification [66], extraction of the Fetal ECG (FECG) from maternal
recordings [23, 9, 24, 104] and the atrial activity extraction for Atrial Fibrilla-
tion (AF) [74, 72, 73, 12, 102]. To show how the ICA technique can be applied
to ECG signal analysis, we discuss two of the most frequent applications in more
detail, namely the extraction of fetal ECG and extraction of arterial activity.

The FECG can provide the clinician with valuable information on the well-
being of the fetus and facilitates early diagnosis of fetal cardiac abnormalities
and other pathologies. For instance, hypoxia may cause an alteration in the
PR and the RR intervals [95], whereas a depression of the ST segment may
be associated with acidosis [81]. Invasive recordings provide FECG with high
SNR [67], but the procedure requires the use of intrauterine electrodes and is
therefore only performed during labor when there is access to the fetal scalp.
Non-invasive recordings with several electrodes placed on the mother’s body
can provide FECG. However, obtaining clean and reliable FECG is challenging
due to the interfering ECG from the mother (MECG) and other interfering
signals such as respiration, the electro-myogram (EMG), electrode movements
and baseline drift. The mother’s QRS wave occasionally overlaps with the fetal
QRS wave making even visual detection of the individual beat of the fetus
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Figure 18.9: The ECG wave and its important features.

impossible, let alone any automated beat detection. Efforts to extract fetal
ECG include adaptive filtering, linear decomposition of single and multi-channel
recordings and nonlinear projection methods (see [76, chapter 2]) including ICA
which we will discuss next.

De Lathauwer et al. [23] show that the separation of FECG from mother’s
skin electrodes can be approached as a linear instantaneous blind source separa-
tion problem. More precisely, the authors discuss two important aspects: i) the
nature of the occurring signal and ii) the characteristics of the propagation from
bioelectric sources to skin electrodes. Regarding the first aspect, the authors
state in accordance with the work of [68] that the MECG-subspace is char-
acterized by a three-dimensional vector signal, whereas the dimension of the
FECG-subspace is subject to changes during the pregnancy period [68]. The
transfer function between the bioelectric sources to body surface electrodes is
assumed to be linear and resistive [64]. Finally, the high propagation velocity of
the electrical signal in the human tissues validate the instantaneous assumption
of the model. Authors show that the application of the ICA method proposed in
[19] to eight ECG observations (see figure 16.17 in chapter 16) recorded from five
skin electrodes located on mother’s abdominal region (electrodes placed near the
fetus) and three electrodes positioned near the mother’s heart (on the mother’s
thoracic region) provides very interesting preliminary results (see section 16.7.1
for more details). A complete and extended study of [23] is presented by the
same team in [24]. They investigate the case of atypical fetal heart rate (FHR)
and the case of fetal twins. To do so, the FHR is artificially obtained using the
real observations depicted in figure 16.17. More precisely, a small piece of data
around t = 0.75s in figure 16.17 was copied to t = 3.5s to simulate an extrasys-
tolic fetal heartbeat and the QRS wave around t = 2s was removed. Figure
18.11 (a) illustrates that the application of ICA on the latter artificial observa-
tions successes in the extraction of FECG from muli-lead potential recordings
on the mother’s skin. Figure 18.10 shows an artificial observations of the fetal
twins. The data of this figure were obtained by shifting both the sixth and
the eighth components of figure 16.18 to artificially generate a new independent
ECG attributed to the second fetus. These two signals were then merged with
the original observations (figure 16.17) after multiplication with random mix-
ing vectors. Figure 18.11 (b) shows that ICA is also able to discriminate the
two fetal twins ECG subspaces, say components 6 and 8 for the first fetus and
component 7 for the second fetus.

In [104], Zarzoso et al. compare a standard adaptive filtering method,
namely multi-reference adaptive noise canceling (MRANC) [96] with the ICA
discussed in method [103]. Figure 18.12 shows one of the cutaneous electrode
recording used in the study. The first five channels correspond to the electrodes
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Figure 18.10: 8-channel set of observations containing heartbeats of fetal twins.
From [24] with permission.

placed on the mother’s abdominal region and the last three signals are related
to the mother’s chest electrodes. The results obtained with MRANC, using
the three thoracic leads as reference are depicted in figure 18.13. Figure 18.14
displays the FECG contribution to the abdominal electrodes (first five signals)
and to chest electrodes (last three signals) of the original recordings obtained
with ICA. More precisely, the ICA method is first applied to the raw data to
isolate the fetal subspace and then to reconstruct the surface FECG from the
FECG-subspace only. Contrary to the MRANC method where the estimated
components are still corrupted by the baseline drift (signal 4 of figure 18.13), the
ICA method seems to be more effective to reconstruct the FECG contribution.
Indeed, the baseline drift is eliminated in figure 18.14 and all fetal components
are less noisy in comparison to those obtained by the MRANC method. It
is also important to point out that, because ICA does not need to use refer-
ence signals, they are able to reconstruct the FECG contribution to the eight
electrodes, either thoracic or abdominal.

Atrial fibrillation (AF) is one of the most common arrhythmias managed in
human cardiology. In the general population it has a prevalence of 0.4 − 1%,
increasing to around 9% among those over 80 years of age [16, 32]. AF is
a supraventricular tachyarrhythmia characterized by uncoordinated atrial acti-
vation. The result is the replacement of the P waves by rapid oscillations or
fibrillatory waves that vary in size, shape and timing [32]. AF is associated with
increased mortality and hospitalization in the general population, and under-
standing of pathological mechanisms underlying AF using non-invasive diagnosis
tools such as surface ECG is crucial to improve the patient treatment strategies.
However, due to the low SNR of AA on surface ECG the analysis of AF remains
difficult. Some methods reported in the literature to enhance AA involve direct
suppression of QRS-T by subtracting: i) a fixed or adaptive template [86, 80]
or ii) an estimated QRS-T complex [87]. Other approaches, based on Principal
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�a)

�b)

Figure 18.11: (a) Source estimates obtained from data containing an extrasys-
tole around t = 3.5s and missing a fetal heartbeat around t = 2s and (b) source
estimates obtained from the data of figure 18.10. From [24] with permission.
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Figure 18.12: A cutaneous electrode recording from a pregnant woman. From
[104] with permission.
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Figure 18.13: FECG contribution to the abdominal electrodes (first five signals)
of figure 18.12 obtained by the MRANC method. From [104] with permission.
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Figure 18.14: FECG contribution to the abdominal electrodes (first five signals)
and to the thoracic electrodes (last three signals) of figure 18.12 obtained with
ICA. From [104] with permission.

Component Analysis (PCA) [50, 27, 54] try to derive a relatively small number
of uncorrelated linear combinations (principal components) of a set of random
zero-mean variables while retaining as much of the information from the data as
possible [19, 26]. The major drawbacks of the QRS-T subtraction approaches
are the use of a small number of QRS-T templates and the high sensitivity to
QRS morphological changes. Regarding the PCA based methods, the orthog-
onality of the bioelectrical sources of the heart is not physiologically justified.
This orthogonality condition can only be obtained through a correct orthogonal
lead, known as the Frank lead system after its inventor [97, 79].

The AF problem was tackled by means of ICA-based methods in [73]. The
authors justify three basic considerations regarding AA and VA, and the way
which both activities are acquired from the surface electrodes: i) the indepen-
dence of VA and AA, ii) their non-Gaussianity and iii) the observations follow an
instantaneous linear mixing model. First, due to the bioelectrical independence
of the atrial and ventricular regions [55], the atrial and ventricular electrical
sources can reasonably be considered as statistically independent. Second, the
distributions of AA and VA are sub-Gaussian and super-Gaussian, respectively
(see section II.C [73] for more details). Finally, the bioelectric theory has mod-
eled the torso as an inhomogeneous volume conductor [68, 58] which justifies
that ECG surface recordings can be assumed to arise as a linear instantaneous
transformation of cardiac bioelectric sources. Hence, the application of ICA-
based methods to extract AA from 12-lead ECG seems to be well suited. The
authors apply the FastICA algorithm [38] on the 12-lead ECG of seven patients
suffering from AF, where they consider that the source subspace is composed
of AA, VA and other interferences. The use of FastICA is justified by the fact
that this algorithm demonstrates a very fast convergence and it can operate in a
deflation mode (can be stopped as soon as the AA sources have been extracted).
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Figure 18.15(a) displays a 12-lead ECG with an AF episode. Fibrillation waves
are observed in several leads, especially leads II, III, aVF and V1. The re-
sults obtained after applying ICA are depicted on figure 18.15(b). The authors
estimate the kurtosis of the extracted sources and show that the three first sep-
arated sources have a more sub-Gaussian distribution and hence are candidates
to be related to AA. The sources 4 to 7 are associated with Gaussian noise
and artifact, whereas the components 8 to 12 which present a super-Gaussian
distribution contain a VA.

One important problem that arises when ICA is used in a biomedical con-
text is to automatically select and classify independent sources of interest, as
addressed in chapter 16 (section 16.7.3). Typically, in the above example the
question is: how to choose the most informative AA sources among the three
first extracted components of figure 18.15(b)? The authors solve this problem
by exploiting some prior information about spectral content of AA during an AF
episode. Indeed, the AA signal exhibits a narrow-band spectrum with a main
frequency peak, fp, between 3.5− 9Hz [50]. Thus, they apply a spectral analy-
sis over all the sources with sub-Gaussian distribution (kurtosis<0) and choose
the first component of figure 18.15(b) as the AA source because it presents a
major peak at frequency fp = 6.31Hz. The previous study only exploits the
spatial diversity introduced by the different placement of the electrodes on the
body. However, the exploitation of the temporal correlation of the AA source
may improve the analysis of AF episode. Based on the narrow-band character
of the AA, Castells et al. [12] propose a spatio-temporal blind source separation
technique which takes advantage of both the spatial and the temporal informa-
tion contained in the 12-lead ECG. This technique (figure 18.16) consists of an
initial ICA step carried out by means of the FastICA algorithm [38] which aims
to remove the non-Gaussian interferences such as VA sources. The second step,
based on the SOBI algorithm [7], exploits the narrow-band nature of the AA
source in order to improve its extraction from near-Gaussian source subspaces
[102]. To evaluate the spatio-temporal ICA method, the authors simulate the
synthesized ECG with a known AA source and then validate the results on 14
real-life ECGs AF data. The results obtained on the simulated database demon-
strate the effectiveness of the spatio-temporal ICA method in comparison with
spatial ICA [73]. Indeed, the correlation coefficients, between the real AA and
the extracted AA, lie between 0.75 and 0.91, whereas the correlation coefficients
of the spatial ICA method lie between 0.64 and 0.80. Regarding the real-life
data, figure 18.17(a) shows that the estimated AA source provided by the spatio-
temporal ICA method (bottom) seems to be less noisy in comparison to the AA
source obtained by the spatial ICA technique (top). Figure 18.17(b) displays
the spectral concentration around the main frequency peak, fp = 6.31Hz, for
the whole real-life database. The spectral concentration is computed as the
percentage of the signal power in the frequency interval [0.82fp� 1.17fp]. Ac-
cording to this criterion, the spatio-temporal ICA method clearly outperforms
the spatial-only ICA method.

18.2.3 Other application fields

It would be regrettable to close this bibliographical survey without citing other
application fields such as functional Magnetic Resonance Imaging (fMRI) where
ICA was used. Especially since fMRI was one of the first biomedical fields ex-
plored by ICA methods [60, 61]. In fact, fMRI is a technique that provides
the opportunity to study brain function non-invasively and is utilized in both
research and clinical areas since the early nineties. The most popular technique
utilizes Blood Oxygenation Level Dependent (BOLD) contrast, which is based
on the differing magnetic properties of oxygenated (diamagnetic) and deoxy-
genated (paramagnetic) blood. When brain neurons are activated, there is a
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Figure 18.15: Inputs and results of the ICA separation process: (a) A 12-lead
ECG from a patient in AF and (b) source estimates obtained by ICA and sorted
from lower to higher kurtosis values. From [73] with permission.
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Figure 18.16: Block diagram of the spatio-temporal method proposed in [12].

Figure 18.17: (a) An example where the spatio-temporal (ICA-SOBI) approach
outperforms the spatial ICA and (b) spectral concentration of AA for AF. From
[12] with permission.
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resultant localized change in blood flow and oxygenation which causes a change
in the MR decay parameter. These blood flow and oxygenation (vascular or
hemodynamic) changes are temporally delayed relative to the neural firing, a
confounding factor known as hemodynamic lag. Since the hemodynamic lag
varies in a complex way from tissue to tissue, and because the exact transfer
mechanism between the electrical and hemodynamic processes is not known,
it is not possible to completely recover the electrical process from the vascular
process. Nevertheless, the vascular process remains an informative surrogate for
electrical activity. However, relatively low image contrast-to-noise ratio of the
BOLD effect, head movement, and undesired physiological sources of variability
(cardiac, pulmonary) make detection of the activation-related signal changes
difficult. ICA has shown to be useful for fMRI analysis for several reasons. ICA
finds systematically non-overlapping, temporally coherent brain regions with-
out constraining the temporal domain. The temporal dynamics of many fMRI
experiments are difficult to study with functional magnetic resonance imaging
(fMRI) due to the lack of a well-understood brain-activation model. ICA can
reveal inter-subject and inter-event differences in the temporal dynamics. A
strength of ICA is its ability to reveal dynamics for which a temporal model is
not available. ICA also works well for fMRI as it is often the case that one is
interested in spatially distributed brain networks. A more exhaustive study of
ICA for fMRI is proposed by Calhoun et al. [8].

Another, but not the last, application of ICA in biomedical engineering is
its use in Magnetic Resonance Spectroscopy (MRS) contexts [70]. MRS is a
recent diagnostic method that was adopted into clinical practice. As explained
in [75], it consists in measuring different biochemical markers by tuning to par-
ticular nuclear resonance frequencies, thus providing precise characterization of
tissue and/or a means for optimizing the SNR. It allows for the non-invasive
characterization and quantification of molecular markers with clinical utility
for improving detection, identification, and treatment for a variety of diseases,
most notably brain cancers. The interpretation of MRS data is quite challeng-
ing: a typical dataset consists of hundreds of spectra, typically having low SNR
with peaks that are numerous and overlapping. More particularly, the observed
spectra are a combination of different constituent spectra. ICA can therefore
be used to identify the shapes of the underlying constituent source spectra and
their contribution to each voxel in the MRS data. Then its use aims at leading
to a better quantification of each reasonance peak.

Electromyographic (EMG) signal applications. These EMG signals acquired
from skin electrodes may be generated by different muscles. It may overlap in
the time and frequency domain, which make the classical filtering approaches
less appropriate for EMG data separation. Farina et al. [28] show that, under
certain assumptions, surface EMG may be considered as a linear instantaneous
mixture. Experimental signals were collected by considering two muscles, the
flexor carpi radialis and the pronator teres. The choice of these two muscles
is motivated by the fact that, it is possible to product contractions in which
only one muscle is active at a time. The ICA method, proposed in [30], is then
applied on three surface observations. The obtained results show that the source
separation is not perfectly reached. The authors explain this limitation by the
fact that the linear instantaneous mixture is just appropriate in the case of
small muscles placed close to each other. Nevertheless, the reported results still
very interesting show that ICA is a promising approach for surface EMG signals
separation: the correlation coefficients between the separated sources and the
reference sources (obtained by the arrays located directly over the muscles) is
higher than 0.9.
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18.3 Numerical complexity of ICA algorithms

Although the ultimate goal of a signal separation approach is the quality of
such a separation, reflected on the estimated source signals, it is interesting
to related the various ICA approaches from a numeral complexity viewpoint.
Numerical complexity is defined here as the number of floating point operations
required to execute an algorithm(flops). A flop corresponds to a multiplication
followed by an addition. But, in practice, only the number of multiplications
is considered since, most of the time, there are about as many (and slightly
more) multiplications as additions. In order to simplify the expressions, the
complexity is generally approximated by its asymptotic limit, as the size of the
problem tends to infinity. We shall subsequently denote, with some small abuse
of notation, the equivalence between two strictly positive functions f and g:

f(x) = O[g(x)] or g(x) = O[f(x)] (18.1)

if and only if the ratio f(x)/g(x) tends to 1 as x → ∞. In practice, knowing
whether or not an algorithm is computationally costly becomes as important as
knowing its performances in terms of SNR. Yet, despite its importance, the nu-
merical complexity of the ICA algorithms is poorly addressed in the literature.
This section first addresses the complexity of some elementary mathematical
operations needed by ICA algorithms. Then, the numerical complexity of var-
ious ICA algorithms are reported and compared to each other as a function of
the number of sources.

18.3.1 General tools

Many ICA algorithms use standard eigen-value decomposition (EVD) or singu-
lar value decomposition (SVD), for instance when a whitening step is required
to reduce the dimensions of the space. Besides the latter decompositions, many
operations can be considered as elementary such as solving a linear system, ma-
trix multiplication, joint diagonalization of several matrices and computation of
cumulants, when cumulant-based algorithms are considered.

• Let A and B be two matrices of size (P ×N) and (N×P ), respectively.
Then the numerical complexity of their product G = AB is equal to P 2N
flops, since each element of G requires N flops to be computed. The
latter amount can be reduced to (P 2 + P )N/2 = O[P 2N/2] flops if G is
symmetric.

• The solution of a P × P linear system via the LU decomposition requires
approximately O[4P 3/3] flops.

• The numerical complexity of the SVD ofA = UΛVT is given byO[2P 2N+
4PN2+14N3/3] flops when it is computed using the Golub-Reinsch algo-
rithm [33]. This amount can be considerably reduced to O[2P 2N ] when
A is tall (i.e. P�N) by resorting to Chan’s algorithm [13], known to be
suitable in such a case.

• The numerical complexity of the EVD G = LΣLT is O[4P 3/3] flops.

Based on the previous expressions, the numerical SO whitening procedure is
equal to O[TP 2/2 + 4P 3/3 + NPT ] flops when it is achieved using the EVD
while it is equal to O[2TP 2] flops when the SVD is considered.

Some ICA algorithms [7, 105, 10, 51, 30] are based on the joint approximate
diagonalization of a set of M matrices Gm (1≤m≤M) of size (P×P ). Recall
that the joint diagonalization problem is defined as the search for a linear trans-
formation that jointly diagonalizes the target matrices Gm. Two main classes
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of joint diagonalization techniques can be distinguished: the orthogonal and the
non-orthogonal methods. The orthogonal joint diagonalization is defined when
the diagonalizing matrix is unitary while the non-orthogonal one does not re-
quire such an assumption. A Jacobi-like algorithm such as the JADE algorithm
[11] is commonly used for joint orthogonal diagonalization. Its numerical com-
plexity is equal to IP (P − 1)(4PM +17M +4P +75)/2 flops if the M matrices
Gm are symmetric where I stands for the number of executed sweeps. On the
other hand, the ACDC algorithm [100] is a good choice when non-orthogonal
joint diagonalization is concerned. The numerical complexity of the latter is
given, for a full sweep AC phase with a single interlacing with the DC one, by
MNP 2 + 2P 3/3 + (3P − 1)/3+ 4N3/3 + (M + 1)N2P + (M + 1)N2 +MNP 2

flops per iteration.

Finally, regarding cumulants estimation, the computation of the 2q-th order
cumulant of a P -dimensional random process requires (2q − 1)T flops where
T stands for the data length. Consequently, the number of flops required to
compute the 2q-th order cumulant array utilizing all its symmetries is then
given by (2q − 1)Tf2q(P ) flops where f2q(P ) denotes the number of its free
entries and is given as a function of P , for q = 1� 2� 3, by:

f2(P ) =
P 2 + P

2
= O[

P 2

2
] (18.2)

f4(P ) =
1

8
P (P + 1)(P 2 + P + 2) = O[

P 4

8
] (18.3)

f6(N) =
P 6

72
+

P 5

12
+

13P 4

72
+

P 3

4
+

22P 2

72
+

P

6
= O[

P 6

72
] (18.4)

Table 18.1 summarizes the numerical complexities of the elementary operations
considered in this chapter.

Numerical complexity (flops)

G = AB P 2N
Lin. system solving 4P 3/3

SVD of A 2P 2N + 4PN2 + 14N3/3
EVD of A 4P 3/3

JAD [11] (Symmetric case) IP (P − 1)(4PM + 17M + 4P + 75)/2
ACDC [100] (MNP 2+2P 3/3+(3P−1)/3+4N3/3+

(M +1)N2P +(M +1)N2+MNP 2)J1
Estimation of the 2q-th (2q − 1)Tf2q(P )
order cumulants array

Table 18.1: Numerical complexity of elementary operations generally used in
the ICA methods. A and B are two matrices of size (P ×N) and (N ×P ),
respectively. I and M stand for the number of executed sweeps and the number
of matrices to be jointly diagonalized, respectively. f2q(P ) denotes the number
of free entries in the 2q-th order cumulant array. J1 is the number of iterations
required for the convergence of the ACDC algorithm.

18.3.2 Complexity of several ICA algorithms

This section aims at giving insights into the numerical complexity of twelve
ICA-based algorithms evaluated in this chapter, as a function of the number N
of sources, the number P of sensors and the data length T . As mentioned in the
introduction, these algorithms are JADE, COM2, SOBI, SOBIrob, TFBSS, In-
foMax, PICA, FastICAsym,FastICAdef , FOBIUMACDC, SOBIUM and STOTD.
Their numerical complexity are given in table 18.2.
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Computational complexity

P : number of sensors, N : number of sources, Ji� i ∈ {1� · · · � 6} is the
number of iterations in the iterative methods �PICA, InfoMax, FastICAsym,
FastICAdef , ALS-FIBIACDC). Q the complexity required to compute the
roots of a real 4th degree polynomial by Ferrari’s technique in the COM2
algorithm. Lw� Nt� Nf � M1 and M2 are respectively the smoothing window’s
length, the number of time bins, the number of frequency bins, the number
of matrices referred to the time-frequency point wherein sources are of
significant energy and the number of matrices among those M1 ones with
only one active source in the considered time-frequency point in the TFBSS
algorithm. As far as the SOBIUM2 algorithm is concerned, m1� n1� m2 and

n2 denote max�P
2� M)�min�P 2� M)�max�P 4� N�N + 1)/2) and

min�P 4� N�N + 1)/2), respectively.

SOBIrob MTP 2/2+ 5M2P 3−M3P 3/3+ 2MP 2N +MN2P +MN2+
(MN2 + 4N3/3)J1 + MN + MP 2 + 2P 3/3 + PN + (3P −
N)N2/3 + IN(N − 1)(17M + 75 + 4N + 4NM)/2

SOBI MTP 2/2 + 4P 3/3 + (M − 1)P 3/2 + IN(N − 1)(17(M − 1) +
75 + 4N + 4N(M − 1))/2

TFBSS min(TP 2/2+4P 3/3+NPT+N� 2TP 2)+2N log2N+N+(T +
Lw + log2(Lw))NtNfN(N +1)/2+2M1N

3/3+3T2+ IN(N −
1)(4NM2 + 17M2 + 4N + 75)/2

SOBIUM MTP 2/2 + min(7m1n
2
1 + 11n31/3� 3m1n

2
1) + 2P 2N +P 2N2 +

N(N − 1)(4N3/3+N4(N − 1))/2+ 2N(N +1)P 4+ (2P 3/3+
(3P − 1)/3)N +min(7m2n

2
2 + 11n32/3� 3m2n

2
2)

COM2 min(TP 2/2 + 4P 3/3 + NPT� 2TP 2) + IN2Q/2 +
min(12If4(N)N2 + 2IN3 + 3Tf4(N) + TN2� 13ITN2/2)

JADE min(TP 2/2 + 4P 3/3 + NPT� 2TP 2) + 3Tf4(N) + TN2 +
min(4N6/3� 8N3(N2 + 3)) + IN(N − 1)(75 + 21N + 4N2)/2

STOTD min(TP 2/2+4P 3/3+NPT� 2TP 2)+3TN4/8+12IN2(N2−1)
FOBIUMACDC 3TMf4(P ) + (2P 6/3 + 2MNP 4 + (M + 1)N2P 2 + MN2 +

4N3/3 + N2 + P 2)J2 + NIP (P − 1)(4P 2 + 21P + 75)/2
PICA min(TP 2/2+4P 3/3+NPT� 2TP 2)+(N3+(T+1)N2+3NT )J3

InfoMax min(TP 2/2+4P 3/3+NPT� 2TP 2)+(N2+N3+4N+5TN)J4
FastICAdef min(TP 2/2 + 4P 3/3 + NPT� 2TP 2) + (2(N − 1)(N + T ) +

5TN(N + 1)/2)J5
FastICAsym min(TP 2/2+4P 3/3+NPT� 2TP 2)+2P 3/2+(16N3/3+N2+

3TN2)J6

Table 18.2: Numerical complexity of some ICA-based algorithms
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For a given number N of sources, the minimal numerical complexity of the
previous methods is obtained by minimizing the values of I� P� M and T provided
a good extraction of the sources is guaranteed. A good rule of thumb is to use
at least Imin = 1 + floor(N1/2) sweeps as in [19]. The minimum value of P
is equal to Pmin = N for all the methods considered even if SOBIUM and
FOBIUMACDC are able to identify underdetermined (i.e. N > P ) mixtures of
sources. We refer to chapter 9 for a treatment of under-determined mixtures.
The minimum value of M is chosen equal to Mmin = 6 for SOBIUM, SOBI,
SOBIrob and FOBIUMACDC. The minimum value of T depends on several
parameters such as N� P , the FO marginal cumulants and the SNR of sources.
Therefore, it is chosen to be the same for all methods.

In summary, it is difficult to compare computational complexity across al-
gorithms because the input parameters are different. But it is still possible if a
common source extraction quality is imposed, which yields an estimation of the
latter parameters. Another possibility would have been to impose a common
overall numerical complexity for all methods as in [101, fig.1], and to look at
performances.

In our experiment, these parameters are empirically estimated over 200 re-
alizations in the context of the Mu-based BCI system described in section 18.4
when P = 6 sensors are used to recover N = 2 sources from T = 10000 data
samples and for an SNR of 5 dB. Figure 18.18 shows the variations of the min-
imal numerical complexity of the twelve methods as a function of the number
of sources N . In the sequel and for the sake of readability, all the methods
considered are classified into three categories to be depicted in all figures: i) SO
statistics methods (TFBSS, SOBIUM, SOBI and SOBIrob), ii) HO cumulant-
based methods (FOBIUMACDC, STOTD, COM2 and JADE) and iii) iterative
MI-based methods (FastICAdef , FastICAsym, PICA and InfoMax). The aver-
age number of iterations used in the iterative methods is equal to 6� 3� 17� 476
and 12 for FastICAdef , FastICAsym, InfoMax, FOBIUMACDC and PICA, re-
spectively. Regarding the TFBSS method, the number of used matrices M1
and M2 is equal to 8446 and 139 respectively while both the used number of
time Nt and frequency Nf bins are set to T/2 with a smoothing window of size
Nf/10. As depicted in figure 18.18, the TFBSS method requires generally the
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Figure 18.18: Minimal numerical complexity as a function of the number of
sources for ten thousand data samples and SNR of 5 dB.

largest amount of calculations compared to the other methods followed by the
FastICAdef one. Regarding the SOBIUM method, it shows an equivalent com-



18.4. PERFORMANCE ANALYSIS ON BIOMEDICAL SIGNALS 817

Figure 18.19: (a) The international 10-20 electrode placement system and (b)
the surface of the left cerebral hemisphere, viewed from the side.

putational complexity compared to the ones of SOBI and SOBIrob up to N = 6,
while an important increase in its complexity can be noted beyond N = 6.
FOBIUMACDC seems to be more costly than STOTD, COM2 and JADE where
they show a comparable amount of calculations especially for P < 10. Finally,
InfoMax, PICA and FastICAsym show a comparable amount of calculations.

18.4 Performance analysis on biomedical signals

The goal of this section is to compare the performance of ICA methods on real-
istic biomedical signals. To do so, we will simulate EEG signals to be used for a
brain-computer interface (BCI) system based on the Mu-rhythm with seven sur-
face electrodes located around sensorimotor cortex (figure 18.19(a)). ICA-based
BCI systems are now of great research interests thanks to potential of interpret-
ing brain signals in real-time. So far only a limited set of ICA algorithms has
been explored for this application [47], namely FastICA and InfoMax, whereas
many other ICA-based algorithms could be used. This point is investigated by
comparing the twelve aforementioned ICA algorithms, namely SOBI, SOBIrob,
COM2, JADE, TFBSS, FastICAdef , FastICAsym, InfoMax, PICA, the STOTD
and FOBIUMACDC.

In such a context the surface observations can be considered as a noisy mix-
ture of one source of interest, namely the Mu-rhythm, and artifact sources such
as the ocular activity. The intracerebral Mu wave located in the motor cor-
tex (figure 18.19(b)) is simulated using the parametric model of Jansen [42]
whose parameters are selected to derive a Mu-like activity. The ocular signal
is obtained from our database. As far as the additive noise is considered, it is
modeled as the sum of the instrumental noise and the background EEG activity.
A Gaussian vector process is used to simulate the instrumental noise while a
brain volume conduction of 800 independent EEG sources is generated using
the Jansen model [42] in order to simulate a surface background EEG activ-
ity. Finally, the mixing matrix is defined as the concatenation of two columns
modeling the head volume conduction [1] of the Mu and the ocular activities.
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18.4.1 Comparative performance analysis on synthetic sig-

nals

Two studies are considered hereafter to evaluate the twelve ICA algorithms we
have tested in the context of Mu-based BCI systems. In the first study, the
quality of the source extraction is evaluated, as a function of the data samples
for different SNR values. In the second study, the behavior of the ICA methods is
examined in the case of an overestimation of the number of sources, for a fixed
data length of T = 10000 and different SNR values. Moreover, the InfoMax
algorithm is implemented with a prewhitening step. All reported results are
obtained by averaging the performance criterion presented hereafter over 200
realizations. Note that a new trial of both sources and noise is generated at
each realization.

18.4.1.1 Performance criterion

Two separators, B�1) and B�2) can be compared with the help of the criterion
introduced by Chevalier [15]. The quality of the extracted component is directly
related to its Signal to Interference-plus-Noise Ratio (SINR). More precisely, the
SINR of the n-th source at the i-th output of the separator B = [b1� . . . �bN ] is
defined by:

SINRn(bi) = πn
|bi

TAn|
2

bi
TR
�n)
x bi

(18.5)

where πn represents the power of the n-th source, bi the i-th column of the

separator B and R
�n)
x is the total noise covariance matrix for the n-th source,

corresponding to the estimated data covariance matrix Rx in the absence of
the n-th source. On the basis of these definitions, the reconstruction quality
of the n-th source at the output of the separator B is evaluated by computing
the maximum of SINRn(bi) with respect to i where 1 ≤ i ≤ N . This quantity
is denoted by SINRMn(B). The performance of a source separator B is then
defined by the following line vector SINRM(B):

SINRM(B) = (SINRM1(B)� . . . � SINRMN (B)) (18.6)

In a given context, a separatorB�1) is better than anotherB�2) for retrieving the
source n, provided that SINRMn(B

�1)) > SINRMn(B
�2)). The criterion given

by (18.6) allows for a quantitative performance evaluation and comparison of
various ICA algorithms. However, the use of this criterion requires knowledge
of its upper bound, which is achieved by the optimal source separator, in order
to completely evaluate the performance of a given ICA method. It is shown
in [15] that the optimal source separator corresponds to the separator B(SMF)
whose columns are the Spatial Matching Filters (SMF) associated with the
different sources. It is defined to within a diagonal matrix and a permutation
by B(SMF)= R−1

x
A where A is the true mixture.

18.4.1.2 Impact of both the SNR and the number of samples

Four experiments are realized in order to evaluate the behavior of the twelve
ICA methods as a function of the data samples for different SNR values i.e. SNR
= −5� 5� 15 and 25 dB. As depicted in figures 18.20, 18.21, 18.22 and 18.23, the
SOBIrob method exhibits, generally, quasi-optimal performance in extracting
both sources (i.e. less than 1 dB from the optimal SINRM). Regarding the
COM2, JADE, TFBSS, SOBI, FastICAdef , FastICAsym, InfoMax, PICA and
STOTD methods, their performance is comparable with a gap of 2 dB, approx-
imately, from the optimal SINRM for SNR values less or equal to 15 dB. This
gap is reduced for SNR of 25 dB and for sufficient data samples as shown in
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Figure 18.20: SINRMn for n ∈ {1� 2} as a function of the data samples with a
SNR of −5 dB, at the output of twelve ICA methods in the context of Mu-based
BCI systems. SINRM1 and SINRM2 express respectively the extraction quality
measure of the ocular and the Mu activities compared to the optimal SMF filter.
i) SO-cumulant based methods (left column), ii) HO cumulant-based methods
(middle column) and iii) iterative MI-based methods (right column).

figure 18.23. Sometimes, the PICA algorithm suffers from convergence prob-
lems especially for a SNR of 5 dB as depicted in figure 18.21, which is probably
due to the insufficiently small stop criterion, i.e. 10−4. As far as the SOBIUM
algorithm is concerned, its behavior seems to be comparable with the one of the
SOBIrob method for ocular activity extraction (i.e. SINRM1). But, it shows a
similar behavior as the ones of COM2, JADE, FastICAdef and FastICAsym for
the Mu wave extraction, except for a SNR of −5 dB which seems to strongly
affect it. Finally the FOBIUMACDC algorithm shows a very good performance
in extracting the ocular activity especially for low SNR values (figures 18.20
and 18.21) and small data samples where, in such a case, it outperforms the
classical ICA methods such as COM2, JADE, FastICAsym and FastICAdef . A
comparable performance, but with a slower convergence speed, can be noted for
the Mu wave extraction provided that the SNR is not too low because for a SNR
of −5 dB, FOBIUMACDC shows a poor performance as compared to SOBIUM.

18.4.1.3 Impact of the overestimation of the number of sources

Since the estimation of the number of sources, when it is unknown, is essential in
ICA methods, it should be interesting to examine the behavior of the latter when
an overestimation of the number of sources occurs. Therefore, two experiments
are realized showing the performance of the twelve methods as a function of the
estimated number of sources, named Nest, for a true number of sources equal to
2 and for different SNR values, i.e. 5 dB and 25 dB.
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Figure 18.21: SINRMn for n ∈ {1� 2} as a function of the data samples with a
SNR of 5 dB, at the output of twelve ICA methods in the context of Mu-based
BCI systems. SINRM1 and SINRM2 express respectively the extraction quality
measure of the ocular and the Mu activities compared to the optimal SMF filter.
i) SO-cumulant based methods (left column), ii) HO cumulant-based methods
(middle column) and iii) iterative MI-based methods (right column).

For a SNR of 5 dB, figure 18.24 shows that the methods SOBIrob, SOBI,
COM2, JADE, TFBSS, FastICAsym, FastICAdef and STOTD, are insensitive
to the overestimation of the number of sources. As far as the InfoMax and
the FOBIUMACDC algorithms are concerned, their behaviors are comparable,
for ocular activity extraction, to those of the latter methods. In spite of this,
they seem to be less effective when the Mu activity extraction (i.e. SINRM2) is
concerned, especially for the InfoMax method which shows a higher sensitivity.
On the other hand, the performance of PICA can be considered as biased for
an overestimation of the number of sources contrary to the latter methods,
especially for the iterative ones such as FastICAsym, FastICAdef , as shown in
figure 18.24. Moreover, a comparable performance with the one of InfoMax
can be noted for the PICA method, especially for Mu wave extraction. This
behavior is probably due to the bias estimation of the moments required for the
estimation of the Pearson model’s parameters or to the high presence of noise
which was probably extracted instead of the source of interest. Regarding the
SOBIUM algorithm, it is the most affected by the overestimation of the number
of sources as shown in Figure 18.24. Such a behavior may be explained by the
miss-estimation of the subspace spanned by the matrices required for the joint
diagonalization or, as for the PICA algorithm, by the high presence of noise that
probably hides the source of interests. Thus, a good way to circumvent such a
problem for both the SOBIUM and the PICA algorithms, is to extract as many
sources as sensors. Such a solution guarantees the extraction of the sources of



18.4. PERFORMANCE ANALYSIS ON BIOMEDICAL SIGNALS 821

0 5000 10000
0

5

10

Samples

S
I
N
R
M

1

 

 

0 5000 10000
0

5

10

15

Samples

 

 

0 5000 10000
0

5

10

15

Samples

 

 

0 5000 10000
0

5

10

15

Samples

S
I
N
R
M

2

 

 

0 5000 10000
0

5

10

15

Samples

 

 

0 5000 10000
0

5

10

15

Samples

 

 

SMF

FOBIUM
ACDC

SMF

FOBIUM
ACDC

SMF

PICA

INFOMAX

FastICA
def,sym

SMF,SOBIUM,
SOBI

rob

TFBSS,
SOBI

INFOMAX

PICA
FastICA

def,sym

SMFSMF,TFBSS,
SOBI,SOBI

rob

SOBIUM

COM2,
JADE,
STOTD

COM2,
JADE,
STOTD

Figure 18.22: SINRMn for n ∈ {1� 2} as a function of the data samples with a
SNR of 15 dB, at the output of twelve ICA methods in the context of Mu-based
BCI systems. SINRM1 and SINRM2 express respectively the extraction quality
measure of the ocular and the Mu activities compared to the optimal SMF filter.
i) SO-cumulant based methods (left column), ii) HO cumulant-based methods
(middle column) and iii) iterative MI-based methods (right column).

interest and enhance the source extraction quality as depicted in figures 18.24
and 18.25.

Finally, for a SNR of 25 dB, SOBIrob, SOBI, PICA, SOBIUM, FOBIUMACDC,
InfoMax show a quasi-similar behavior compared to the case of a SNR of 5 dB.
But, contrary to the previous case, COM2, STOTD, FastICAsym, FastICAdef ,
JADE and TFBSS methods seem to be slightly sensitive to the overestimation
of the number of sources, as depicted in figure 18.25 but with some superior
performance of the COM2 and STOTD algorithms with respect to both JADE
and TFBSS.

18.4.1.4 Summary of both studies

This section gives a summary of the computer results obtained from both pre-
vious studies. The main conclusions are as follows:

• SOBIrob is the most powerful method compared to the other methods
considered, especially those based on SO statistics. Its quasi-optimal per-
formance (when its requested assumptions are satisfied) is not limited to
source extraction with moderate numerical complexity, but also to its in-
sensitivity to the overestimation of the number of sources.

• Regarding the HO cumulant-based methods, STOTD, COM2 and JADE
show a good performance with moderate numerical complexity. One can
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Figure 18.23: SINRMn for n ∈ {1� 2} as a function of the data samples with
a SNR of 25 dB, at the output of twelve ICA methods in the context of Mu-
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quality measure of the ocular and the Mu activities compared to the optimal
SMF filter. i) SO-based methods (left column), ii) HO cumulant-based methods
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notice some weakness of the JADE algorithm with respect to an overes-
timation of the number of sources. On the other hand, one could resort
to artifact removal as a preprocessing step (provided reasonable SNR) us-
ing the FOBIUMACDC method, and then apply either COM2 or JADE or
STOTD. It is worth noting that using reasonably small data samples for
artifact removal would be a good trade-off between the performance and
the computational complexity of the FOBIUMACDC method.

• Both FastICAdef and FastICAsym show generally a good performance for
source extraction over the other iterative MI-based algorithm. But the
FastICAsym algorithm should be preferred over the FastICAdef when a
constraint on the computational burden is imposed.

18.4.2 ICA of real data

In this section, we present an example of using ICA in the real data world.
As we have already seen in our experiments, the SOBIrob algorithm seems to
be the most powerful method for simulated data. Therefore, it is applied to
the observations depicted in figure 18.4. These observations present some sur-
face electrical activities recorded by subset of 13 EEG electrodes, derived from
the standardized 10-20 system during twenty second with a sampling rate of
256 Hz. Several artifact structures are evident, such as horizontal eye move-
ments, eye blinks and muscle activity. In addition, other disturbances with
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weaker power, such as electrode movements and baseline drift, contaminate the
data. The obtained results, depicted in figure 18.26, show that components S3
and S5 represent clearly an activation of eye blinks and horizontal eye move-
ments, respectively. Regarding the components S2 and S4, they represent the
muscle activity and a slow movement which is probably related to the electrode
movement. Besides, S1 displays the cerebral activity, which is considered in this
experiment as the signal of interest. However, a slight alteration in S1, caused
by eye blinks, still exists, which implies that the source extraction is not well-
performed. This example shows that, even if the ICA can not perfectly separate
the signal of interest from the artifacts, it guarantees the SNR enhancement.

18.5 Conclusion

The strength of ICA in the context of biomedical applications lies in its ability
to extract signals despite the lack of reference signals or training labels. When
this information is lacking, as is so often the case in biomedical signals, one
can not use conventional regression methods to remove noise or extract signals
of interest. ICA exploits the spatial diversity with which independent sources
contribute additively to multiple simultaneous recordings. In all applications of
ICA it is important to verify that the sources of interest do indeed satisfy these
assumptions: diversity, independence, and linearity. For biomedical signals in
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particular, the use of ICA also imposes on the user the extra burden to demon-
strate that the extracted components are physiologically meaningful. This is
typically done by comparing the extracted sources to the known properties of
the signals of interest such as their spatial distribution, spectral characteristics,
or temporal regularities. This invariably requires the user to have a solid knowl-
edge base in the specific biomedical domain. In summary, one could say that
the power of ICA should be used responsibly.
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