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Abstract

Most approaches to the problem of source separation use the assumption

of statistical independence. To capture statistical independence higher

order statistics are required. In this chapter we will demonstrate how

higher order criteria, such as maximum kurtosis, arise naturally from

the property of non-stationarity. We will also show that source sepa-

ration of non-stationary signals can be based entirely on second order

statistics of the signals. Natural signals, be it images or time sequences,

are for the most part non-stationary. For natural signals therefore we

argue that non-stationarity is the fundamental property, from which

speci�c second or higher order separation criteria can be derived. We

contrast the linear bases obtained using second order non-stationarity

and ICA for the cases of natural images and speech powers. Based on

these results we argue that speech powers can in fact be understood as

a linear superposition of non-stationary spectro-temporal independen-

t components, while this is not so evident for a spatial basis of images

intensities. Finally we demonstrate the practical utility of the second or-

der non-stationarity concept with a separation algorithm for the problem

of convolutive source separation. We show its e�ectiveness on acoustic

mixtures in real reverberant environments.

1.1 Second and higher order separation criteria in the

context of non-stationary signals

Most approaches to source separation have been based on the condition

of statistical independence of the constituent signals. Conventionally,

higher order statistics are required to capture statistical independence.
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In fact if the source signals are identically and independently distributed

(i.i.d.) samples of a stationary distribution second order statistics are

not suÆcient for separation. Fortunately, natural signals are often not

stationary, nor independently distributed.

Usually natural signals are sampled on a regular lattice, e.g., one-

dimensional arrays for time sequences, two-dimensional arrays for im-

ages, three-dimensional arrays for image sequences and so on. Neigh-

boring samples on such a lattice are often correlated. Furthermore the

statistics of the samples are often not stationary on the lattice, that

is, the signals are non-stationary in time or space. This rich spatio-

temporal diversity, a result of the spatio-temporal ordering of samples,

rather than being a problem, can actually simplify the problem of source

separation. In this chapter we try to highlight the statistical properties

that arise from non-stationarity that allow us to de�ne useful separation

criteria.

First, we will argue that non-stationarity justi�es higher order criteria,

in particular maximum kurtosis. The kurtosis of a signal has been used

for separation of natural signals, such as speech, or to �nd independent

linear bases for natural images. Thereby the assumption is made that

the sources of interest have a sparse distribution or high kurtosis. In

section 1.2 we show that non-stationarity in fact leads to high kurtosis

signals validating the high kurtosis assumption for source separation for

natural signals.

It is well known that for temporally correlated sources signal separa-

tion can be based entirely on second order statistics (Bradwood, 1978;

Bar-Ness et al., 1982; Fety and Van Ul�elen, 1988; Tong and Liu, 1990;

Belouchrani et al., 1993; Molgedey and Schuster, 1994; Van Gerven and

Van Compernolle, 1995). Less well-known is the fact that non-stationary

signals can be separated using decorrelation as well (Souloumiac, 1995;

Matsuoka et al., 1995; Parra and Spence, 2000a). Almost identical al-

gorithms can be used in both cases, as we will discuss in section 1.3.

Furthermore, for correlated and non-stationary signals the more diÆ-

cult problem of convolutive source separation can be solved using second

order statistics as �rst indicated by Weinstein et al., 1993 and shown in

Kawamoto et al., 1998; Parra and Spence, 2000a. We will present a

speci�c algorithm and examples of recovering speech in a reverberant

environment in section 1.5.

In section 1.4 we verify our arguments by applying the criterion of

non-stationary second order decorrelation to �nd linear bases for natu-

ral images and speech signals. We contrast the results with a standard
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ICA algorithm. For images, in the past, linear bases for small spatial

areas of the visual �eld have been compared to visual receptive �elds

(Olhausen and Field, 1996). Receptive �elds in the auditory domain are

found to be spectro-temporal patterns (Kowalski et al., 1996; deCharms

and Merzenich, 1998; Theunissen and Doupe, 1998). Di�erent linear

bases for small patches of natural images and small spectro-temporal

patches of speech powers will be presented in section 1.4. The merits

and problems of a linear superposition model of non-stationary indepen-

dent components will be discussed for both these domains. In essence

we argue that acoustic signal powers are well described by such a lin-

ear superposition model. We question, however, the concept of linear

superposition of image intensities.

1.2 Kurtosis of non-stationary signals

To facilitate the analysis we will �rst introduce a rather general class of

stochastic processes that expresses the main property of non-stationarity

we would like to address. Then we will show that this class of non-

stationary signals is heavy tailed as measured by their kurtosis.

Assume that at any given instance the signal is speci�ed by a prob-

ability density function with zero mean and arbitrary scale or power.

Furthermore assume that the signal is non-stationary in the sense that

its power varies from one time instance to the next.y A closely related

class of signals is the so-called spherical invariant random process (SIR-

P). If the signals are short time Gaussian and the powers vary slowly the

class of signals we have just described are approximately SIRPs. SIRPs

have been shown to cover a large range of di�erent stochastic processes

with very di�erent higher order properties depending on the distribu-

tion of powers. They have been used in a variety of signal processing

applications (Goldman, 1976; Rangaswamy et al., 1993; Rupp, 1993).

Band-limited speech in particular has been shown to be well described

by SIRPs (Brehm and Stammler, 1987). Natural images have also been

modeled by what in essence is closely related to SIRPs | a �nite (Spence

and Parra, 2000) or in�nite (Wainwright and Simoncelli, 2000) mixture

of linear Gaussian features.

Consider a stochastic process with samples z(t) drawn from a zero

mean distribution pz(z). Assume we observe a scaled version of this

y Throughout this chapter we will refer to signals that are sampled in time. Note
that all the arguments apply equally well to a spatial rather than temporal sam-
pling, that is, images rather than time series.
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process, where the magnitude or scale changes over time. If the scale

at any instant is given by s(t) > 0 sampled from ps(s) the resulting

observable process,

x(t) = s(t)z(t) ; (1.1)

is distributed according to

px(x) =

Z
1

0

ds ps(s) px(xjs) =

Z
1

0

ds ps(s) s
�1 pz(

x

s
) : (1.2)

We refer to px(x) as the long term distribution and pz(z) as the instan-

taneous distribution. In essence px(x) is a mixture distribution with

in�nitely many kernels s�1pz(
x
s ). We would like to relate the sparseness

of pz(z), as measured by the kurtosis, to the sparseness of the observable

distribution px(x). Kurtosis is de�ned as the ratio between the fourth

and second cumulant of a distribution (Kendal and Stuart, 1969). As

such it measures the length of the distribution's tails, or the sharpness

of its mode. For a zero mean random variable x this reduces (up to a

constanty) to

K[x] =



x4
�
x

hx2i
2
x

: (1.3)

The expectation over px(x) is denoted, hf(x)ix =
R
dxf(x)px(x).

We will show now that the kurtosis of the long term distribution is

always larger than the kurtosis of the instantaneous distribution unless

the scale is stationary, i.e. K[x] � K[z], where the equality holds for

ps(s) = Æ(s� c) for any arbitrary constant c.

Since z and s are independent it is easy to show that,

hxnix = hsnis hz
niz : (1.4)

With this we can write the kurtosis K[x] of the long term distribution

in terms of the kurtosis K[z] of the instantaneous distribution,

K[x] = K[z]



s4
�
s

hs2i
2
s

: (1.5)

Since for any density of a positive random variable, ps(s) � 0 and

ps(s) = 0 for s < 0, we know thatZ
1

0

ds ps(s) (s
2 � c2)2 � 0 (1.6)

y The conventional de�nition is K[x] =


x4
�
x
=


x2
�2
x
� 3. We neglect for conve-

nience the constant �3 in our de�nition.
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for arbitrary c. Equality holds only when the integrand vanishes every-

where, i.e. if and only if ps(s) vanishes except for s
2 = c2. The only

distribution that vanishes everywhere except in one point is the Dirac

Æ-distribution. Therefore equality holds if and only if ps(s) = Æ(s � c).

Rewriting 1.6 we obtain
Z
ds ps(s) (s

4 � 2s2c2 + c4) =


s4
�
s
� 2



s2
�
s
c2 + c4 � 0 (1.7)

The minimum with respect to c occurs at


s2
�1=2
s

. Inserting this gives



s4
�
s

hs2i2s
� 1 (1.8)

We have therefore,

K[x] � K[z] (1.9)

The equality holds if and only if ps(s) = Æ(s� c). This result has been

�rst published by Beale and Mallows, 1959 for symmetric pz(z).

This result means that if the scale s(t) is �xed, i.e. the magnitude

of the signal is stationary, the kurtosis will be minimal. Inversely, non-

stationary signals, de�ned as a variable scaling of an otherwise stationary

process, will have increased kurtosis.

In the discussion above the time t did not play a particular role other

than to indicate that we sample the random variables over time and

that a variable scale translates to scale non-stationarity. We also did

not demand that samples be drawn independently. That is, we are

implicitly allowing signals that are correlated over time.

In summary we can say that signals with varying power will tend to

have high kurtosis.

In our de�nition a stationary Gaussian signal has kurtosis 3. Non-

stationary Gaussian signals will be leptokurtic (K > 3). All SIRPs

are therefore leptokurtic. The assumption that a distribution is sparse,

frequently used in source separation of natural signals, is therefore jus-

ti�ed. However we will not go into the speci�c approaches of source

separation based on higher order statistics as they have been extensive-

ly studied and are described elsewhere in this volume. A good overview

of higher order contrast functions is given by Cardoso, 1999. In the

following section we will demonstrate how non-stationarity can be used

more explicitly and in fact simpli�es the problem of source separation

by allowing us to use statistics of only second order.
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1.3 Separation based on non-stationary second order statistic

In this section we will concentrate on instantaneous mixtures. The

more complex case of convolutive mixtures will be presented in the

next section. To clarify the notation let us restate the basic problem.

Assume ds statistically independent sources s(t) = [s1(t); :::; sds(t)]
T .

These sources are mixed in a linear medium leading to dx sensor signals

x(t) = [x1(t); :::; xdx(t)]
T that may include additional sensor noise n(t),

x(t) = As(t) + n(t) : (1.10)

How can one identify the dxds coeÆcients of the mixture A and how can

one �nd an estimate ŝ(t) for the unknown sources?

Early work in the signal processing community proposed that the

linearly mixed sources could be recovered by �nding the linear transfor-

mation W that decorrelates the measured signals, or, more speci�cally,

that diagonalizes the measured auto-correlations at multiple time delays

(Bradwood, 1978; Bar-Ness et al., 1982; Fety and Van Ul�elen, 1988;

Tong and Liu, 1990). For an instantaneous mix of non-white signals

this is in fact suÆcient as discussed by Molgedey and Schuster, 1994;

Van Gerven and Van Compernolle, 1995. Almost the same approach can

be taken if the signals are non-stationary rather than non-white. In this

case we can use the covariance estimated during di�erent time intervals

instead of the covariance for di�erent delays, as we will now show. This

was indicated by Weinstein et al., 1993 and has been explicitly used by

Souloumiac, 1995; Kawamoto et al., 1998.

Note that strictly speaking we are not searching for independent com-

ponents. We are merely searching for decorrelated model signals that

explain a static and instantaneous linear mixture. Certainly statistically

independent signals are uncorrelated, but the inverse is not always true.

1.3.1 Forward model estimation

We can formulate the instantaneous covariance Rx(t) of the measured

signals at time t with the assumption of independent noise as

Rx(t) �


x(t)xT (t)

�
= A



s(t)sT (t)

�
AT +



n(t)nT (t)

�
�A�s(t)A

T +�n(t) :
(1.11)

Since we assume uncorrelated sources at all times, we postulate diagonal

covariance matrixes �s(t). We also assume uncorrelated noise at each

sensor, i.e. diagonal �n(t). Any reasonable de�nition of average hf(t)i
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that satis�es these diagonality criteria is applicable, such as the average

over an ensemble of independent realizations of the signal s(t) and noise

n(t), or the average over a time window surrounding the time instance

t, hf(t)i =
PT=2

�=�T=2 f(t+ �). We prefer to reserve the latter de�nition

however for the empirical sample average R̂(t), which is a noisy metric

of a presumed underlying instantaneous correlation R(t) that gave rise

to the signals.

Note that any scaling and permutation of the coordinates of �s(t) can

be absorbed by A. It is well known that the solution is therefore only

speci�ed up to an inherently arbitrary permutation and scaling. Thus

we are free to choose the scaling of the coordinates in s. For now we

choose Aii = 1 ; i = 1; :::; ds, which places ds conditions on our solutions.

For non-stationary signals, a set of K equations (1.11) for di�erent

times t1; :::tK and the ds scaling conditions give a total of Kdx(dx +

1)=2 + ds constraints on dsdx + dsK + dxK unknown parameters A,

�s(t1); :::;�s(tK), �n(t1); :::;�n(tK).y Assuming all conditions are lin-

early independentz we have suÆcient conditions if

Kdx(dx + 1)=2 + ds � dsdx + dsK + dxK : (1.12)

It is interesting to note that in the square case, ds = dx, there are

not suÆcient constraints to determine the additional noise parameters

unless dx � 4, no matter how many more times one considers.x If we

assume zero additive noise, in principle K = 2 is suÆcient to specify the

solution up to arbitrary permutations.

In the square case, ds = dx, with zero noise in principle K = 2 is

suÆcient to specify the solution up to arbitrary permutations. In that

case the problem can be solved as a non-symmetric eigenvalue problem

as outlined by Molgedey and Schuster, 1994. The covariances at times

t1 and t2 satisfy,

Rx(t1) = A�s(t1)A
T (1.13)

Rx(t2)
�1 = A�T�s(t2)

�1A�1 (1.14)

which can be combined to

Rx(t1)Rx(t2)
�1A = A�s(t1)�s(t2)

�1 (1.15)

y We will abbreviate the notation in the reminder of the paper by writing �s(::)
when we refer to all �s(t1); :::;�s(tK). We use this notation also for �n(t).

z Conditions on Rx(t) and �s(t) for linear independence are outlined in Molgedey
and Schuster, 1994.

x One can see this by re-writing the inequality as K(d2x � 3dx) + 2(dx � d2x) � 0:
The second term is never positive, and the �rst is only positive if dx � 4.
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Equation (1.15) represents a non-symmetric eigenvalue problem. In gen-

eral its solutions, A, are not orthogonal as expected.

The diÆculty with such algebraic solutions, however, is that one does

not have perfect estimates of Rx(t). Even if we assume zero noise at best

one can assume non-stationary signals and measure the sample estimates

R̂x(t) within some time interval. If we interpret the inaccuracy of that

estimation as measurement error

E(t) � R̂x(t)� �n(t)�A�s(t)A
T ; (1.16)

it is reasonable to estimate the unknown parameters by minimizing the

total measurement error for a suÆciently large K,

Â; �̂s(::); �̂n(::) = argmin
A;�s(::);�n(::);Aii=1

KX
k=1

kE(tk)k
2
: (1.17)

The matrix norm here is the sum of the absolute squared values of every

coeÆcient. Note that kE(k)k
2
= Tr[E(k)EH (k)]. This is a least squares

(LS) estimation problem.

1.3.2 Simultaneous diagonalization with unitary

transformations

In the context of source separation it is common to reduce the problem

of �nding a general linear transformation A to that of �nding only a

rotation V by �rst diagonalizing the long term covariance (Cardoso and

Souloumiac, 1993; Comon, 1994).

This approach is feasible only in the the case that the noise is of e-

qual power, �2, in all sensors. In addition, for our case this approach

requires stationary noise, �n(t) = �2I . Under these constraints the solu-

tion to (1.17) can be computed explicitly using an elegant simultaneous

diagonalization technique presented in Cardoso and Souloumiac, 1996.

Consider the long term average �Rx =
P

tRx(t). To properly account

for additive noise, one has to �rst obtain an estimate of the long term

covariance �Ry of the signal portion in the mixture, y(t) = As(t). Fol-

lowing (1.11) this covariance is given by �Ry = �Rx��2I . Conventionally

for ds < dx a more stable estimate of �Ry is obtained using an eigenvalue

decomposition of the sample average estimate of �Rx, i.e. �Rx = UTDU ,

where D represents a diagonal matrix with the eigenvalues of �Rx and

U the corresponding matrix of eigenvectors. The eigenvectors with the

largest eigenvalues are conventionally referred to as the principal compo-

nents. A robust estimate of �Ry is given by �Ry = UT max(D� �2I; 0)U .
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This is a classic subspace analysis where the dx-dimensional data is as-

sumed to originate in a ds-dimensional subspace. The average of the

dx � ds smallest eigenvalues provide an estimate for �2.y

One can show that �Ry is diagonalized, i.e. Q �RyQ
T = I , by a whitening

operationQ = (D��2I)�1=2U .y Furthermore, for any arbitrary rotation

V the matrix

A = Q+V ���1=2s (1.18)

satis�es �Rx = A��sA
T � ��n, which is precisely the diagonalization condi-

tion (1.11) for the long term averages. Q+ represents the pseudo-inverse

of Q. Both of these results can only be derived for equal power noise. To

�nd the correct A one has to determine V using additional constraints.

It is important to note, however, that the problem of �nding a general

linear transformation A has been reduced to �nding a rotation V .

Consider now the whitened signal portion of the mixture, z = Qy(t).

Using (1.18) its instantaneous covariance can be written as

Rz(t) = QRy(t)Q
T = QA�s(t)A

TQT = V �s(t)�
�1
s V T : (1.19)

We �nd therefore that the remaining rotation V has to diagonalize Rz(t)

for all times. With the same reasoning on a minimal estimation error,

therefore, we can rewrite (1.11) as

Ez(t) � QE(t)QT = Rz(t)� V �s(t)�
�1
s V T (1.20)

V̂ ; �̂s(::);= argmin
V=V T ;�s(::)

KX
k=1

kEz(tk)k
2
: (1.21)

This is exactly the problem addressed in the approximate joint eigenspace

algorithm described in Cardoso and Souloumiac, 1996.

Note that Ry(t) can only be properly estimated if �n(t) is known. This

is why we requested stationary noise powers that may be estimated with

the subspace analysis outlined above. Additionally we had to demand

equal noise powers. There might be cases where this conditions are too

restrictive. In addition, and as we will see in section 1.5, one may wish

to place other constraints on A. In such case direct optimization with

respect to A as in (1.17) may be desired.

y If in fact, ��n = �2I, in principle the smallest eigenvalues should all have the same
magnitude �2. However, a sample average is never exact and sampling average
instabilities require us to use max(D � �2I; 0).

y In case that ds < dx only the ds rows of Q corresponding to non-negative values
of D � �2I have to be considered.
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1.3.3 Gradient based diagonalization

To �nd the extrema of the LS cost J =
PK

k=1 kE(tk)k
2
in (1.17) let us

compute the gradients with respects to its parametersz

@J

@A
= �4

KX
k=1

E(tk)A�s(tk) (1.22)

@J

@�s(tk)
= �2 diag

�
ATE(tk)A

�
(1.23)

@J

@�n(tk)
= �2 diag [E(tk)] (1.24)

We can �nd the minimum with respect to A, and �s(tk) with a gra-

dient descent algorithm using the gradients (1.22), and (1.23). The op-

timal �n(tk) for given A and �s(tk) at every gradient step can be com-

puted explicitly by setting the gradient in (1.24) to zero, which yields

�̂n(tk) = diag
h
R̂x(tk)�A�s(tk)A

T
i
.

1.3.4 Estimation of source signals

In the case of a square and invertible mixing matrix Â, the signal esti-

mates are trivially computed to be ŝ = Â�1x. In the non-square case

for ds < dx we can compute the LS estimate

ŝLS(t) = argmin
s(t)

kx(t)� Âs(t)k = (ÂT Â)
�1
ÂTx(t) : (1.25)

If we assume the additive noise to be short term Gaussian, but not

necessarily white or stationary, we can compute the maximum likelihood

(ML) estimate

ŝML(t) = argmax
s(t)

p[x(t)js(t); Â; �̂n(t)]

=
h
ÂT �̂n(t)

�1
Â
i
�1

ÂT �̂n(t)
�1
x(t) :

(1.26)

where p() is the Gaussian probability density given by the noise density.

If we further assume the signal to be short term Gaussian, again not nec-

essarily white or stationary, we can compute the maximum a posteriori

z The diagonalization operator here zeros the o�-diagonal elements, i.e.

diag(M)ij =

�
Mij ; i = j
0; i 6= j
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probability (MAP) estimate. For Gaussian densities the MAP estimate

is equal to the conditional expectation E[s(t)jx(t); Â; �̂n(t); �̂s(t)]

ŝMAP(t) = argmax
s(t)

p[s(t)jx(t); Â; �̂n(t); �̂s(t)]

= E[s(t)jx(t); Â; �̂n(t); �̂s(t)]

=
h
ÂT �̂n(t)

�1
Â+ �̂s(t)

�1
i
�1

ÂT �̂n(t)
�1
x(t) :

(1.27)

Note however that the resulting estimates may not be uncorrelated.

Assuming that the model is correct and that we found the correct esti-

mate Â � A,



ŝLSŝ

T
LS

�
�


ssT

�
+ (ÂT Â)

�1
ÂT�nÂ(Â

T Â)
�1

: (1.28)

Since the second term may not be diagonal, the resulting estimates can

be correlated. However, this is not a problem since the correlation is

entirely due to correlated noise and the signal portion of the estimates

remains uncorrelated.

Instantaneous source separation based on second order statistics has

found applications to image processing (Schie�l et al., 2000), magneto-

enciphalography (W�ubbeler et al., 2000; Tang et al., 2000) and other

biomagnetic recordings (Ziehe et al., 2000). The following two sections

will demonstrate two applications of source separation. First we will

compare the criteria of independence and non-stationary decorrelation

in the case of natural images and the time-frequency representation of

speech. Then in section 1.5 the strength of the non-stationarity condition

is demonstrated on the more complex problem of convolutive source

separation in a real acoustic environment.

1.4 Linear basis of images and sounds

In the �rst two sections we have argued that for non-stationary signals

high kurtosis and multiple decorrelation can both be used to �nd linear

combination of independent sources. If the basic model of linearly mixed

sources does not strictly apply, however, it is not evident that the two

criteria will lead to the same results. In this section we will use this

to verify the modeling assumptions for two di�erent domains, natural

images and speech signals.

For images, in the past, linear bases for small spatial areas of the

visual �eld have been compared to visual receptive �elds (Olhausen

and Field, 1996). Receptive �elds in the auditory domain are found



12 Parra and Spence

to be spectro-temporal patterns (Kowalski et al., 1996; deCharms and

Merzenich, 1998; Theunissen and Doupe, 1998). We will therefore ana-

lyze spatial segments in images and spectro-temporal segments in speech

signals.

In the following we �nd independent components using the simulta-

neous approximate joint diagonalization of cumulant matrices algorithm

(JADE) Cardoso and Souloumiac, 1993. This algorithm assumes that

there are non-Gaussian independent sources. On the other hand the

multiple decorrelation algorithm described in the previous section as-

sumes that there are non-stationary sources. Both algorithms assume a

stationary linear mixture.

1.4.1 Spatial basis of image intensities

ICA has often been used to �nd a linear basis for images. This may

be useful for image coding since independent components are the linear

representation with minimal redundancy and maximize therefore coding

eÆciency (Deco and Obradovic, 1996). It has also been suggested that

when applied to natural images the resulting independent bases resemble

receptive �elds observed in the visual cortex (Bell and Sejnowski, 1997;

van Hateren and Ruderman, 1998). The high kurtosis distributions and

reduced redundancy (sparseness in space and across stimuli) correspond

to the sparseness reported for V1 neurons (Olhausen and Field, 1996).

In fact minimum redundancy has been proposed for many years as an or-

ganizing principle of visual processing (Barlow, 1961; Atick and Redlich,

1990).

The question arises, however, if a linear basis also expresses some-

thing about the generation process of images. It has been argued that

independent sources can be considered as underlying causes and that

an image patch represents a linear combination of those independent

causes (Bell and Sejnowski, 1997). Others have argued that occlusion

is the predominant characteristic of image generation. Light in any im-

age regions stems from a single opaque object in contradiction with the

concept of a linear superposition (Ruderman, 1998).

We maintain that an intrinsic property of natural signals is non-

stationarity. If that is correct, and image patches are in fact a linear

combination of independent sources, ICA and our multiple decorrelation

algorithm should give the same results. Otherwise one of the assump-
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PCA

MDA

ICA (JADE)

Fig. 1.1. Linear bases of natural images: Linear bases in a 30 dimensional
subspace for 15x15 image patches of natural images.

tions has to be dismissed, i.e. images are not a linear combination of

independent sources, or the sources are stationary.y

We computed for a set of natural images the linear basis with ICA

and our multiple decorrelation algorithm (MDA) as described in sec-

tion 1.3.2. The results are compared to those of the well-known princi-

pal components algorithm.y These components are particularly relevant

here since both algorithms (JADE and MDA) use principal component

analysis (PCA) to reduce the dimensionality of the problem as a �rst

step of the processing.

Figure 1.1 shows the three basis sets obtained for the natural images

used in Bell and Sejnowski, 1997. A total of 15,842 image patches of

15x15 pixels where used as input. The bases were computed in the sub-

space of the �rst 30 principal components. Separate correlations for each

y We consider the possibility of non-stationary independent components with long
term Gaussian distribution to be unlikely.

y In section 1.3.2 the vectors in U with the largest eigenvalues.
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image were computed for MDA. We see that components obtained using

non-stationarity are not much di�erent from the principal components

and di�er quite considerably from the independent components. The

independent components reported here vary also from the components

obtained in Bell and Sejnowski, 1997. This is because in that work a

speci�c higher order statistics is used to �nd the linear components,

while JADE makes no particular assumption on the statistics of the

components other than non-gaussianity.

In summary, we conclude that while independent components for im-

ages may be useful for coding and for a compact representation of the

data, the assumption that image patches are linear combinations of in-

dependent causes is questionable.

1.4.2 Spectro-temporal basis of speech powers

The situation is quite di�erent for sounds. It is well known that the

signal powers of independent acoustic signals combine additively. The

linear superposition assumption for signal powers is well justi�ed. The

question is whether there are independent components and if these com-

ponents are non-stationary.

In section 1.5 we will consider the case in which there are multiple

sound sources in a reverberant environment and one makes multiple

observations of those sources by using multiple microphones. In that

case it is reasonable to assume that the sources are independent and the

basic physics of acoustics indicates that amplitudes combine additively

(barring non-linear phenomena in the microphones and ampli�ers). The

diÆculty there however is that the linear combination is convolutive

rather than instantaneous.

In this section we want to analyze the statistical properties of the

powers of a single source, in particular for speech signals. We are in-

terested in the frequency and time properties of signal powers. We will

therefore look for a basis that contains spectral as well as temporal in-

formation. Guided by what is know of auditory perception we compute

the frequency components on a Bark scale for short consecutive time

intervals (Pinter, 1996). For computational reasons we must limit the

number of bands and neighboring time slices used. We choose to �nd

a basis for a segment of 21 Bark-scale bands and 8 neighboring time

slices corresponding to 128ms of signal between 0 and 4 kHz.y A set of

y We used half overlapping windows of 256 samples such that for a 8 kHz signal
neighboring time slices are 16 ms apart.
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"We had a barbecue over the weekend at my house."

PCA

MDA

ICA

Fig. 1.2. Spectro-temporal linear basis representation of speech: One
pixel in the horizontal direction corresponds to 16 ms. In the vertical direc-
tion 21 Bark scale power bands are displayed. The upper diagram shows the
log-powers for a 2.5 s segment of the 200 s recording used to compute the dif-
ferent linear bases. The three lower diagrams show three sets of 15 linear basis
components for 21x8 spectro-temporal segments of the speech powers. The sets
correspond to PCA, MDA, and ICA respectively. Note that these are not log-
powers, hence the smaller contribution of the high frequencies as compared to
the log-power plot on top.

7808 such spectro-temporal segments were sampled from a 200 second

recording of clean speech of a female speaker with signal to noise ratios

of at least 30 dB. Figure 1.2 shows the results obtained for a subspace of

15 components. One can see that the components obtained with MDA

are quite similar to the result of ICA and di�er considerably from the

principal components.

From this we conclude that speech powers can in fact be thought of

as a linear combination of non-stationary independent components. The

relevance of this result for auditory receptive �elds should not be over-
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emphasized, however. The linear superposition model applies to speech

powers, while it is generally believed that auditory sensitivity scales with

the logarithm of power. In that case a linear superposition is no longer

correct.

These results were interesting from a theoretical point of view. The

following section concentrates on an actual application in a realistic

environment. The purpose for presenting this here is to demonstrate

the strength of these second order methods in the case that the non-

stationarity, independence, and linear superposition assumptions are

strictly met. In a real acoustic environment however the mixing prob-

lem is more complicated as we have to consider convolutive rather than

instantaneous mixtures.

1.5 Convolutive source separation of non-stationary signals

In a real environment, where the signals travel slowly compared to their

correlation time, the instantaneous mix is not a good description of the

linear superposition. The signals arrive at the di�erent sensors with

di�erent time delays. In fact, the signals may be re
ected at boundaries

and arrive with multiple delays to a particular sensor. This scenario is

referred to as a multi-path environment and can be described as a �nite

impulse response (FIR) convolutive mixture,

x(t) =

PX
�=0

A(�)s(t � �) (1.29)

How can one identify the dxdsP coeÆcients of the channels A and how

can one �nd an estimate ŝ(t) for the unknown sources? This situation

is considerably more complicated than in the previous sections as one

has now a matrix of �lters rather than a matrix of scalars. Even once

the channel has been identi�ed, inverting it is a more diÆcult task as in

principle the inverse should be a recursive, and therefore potentially an

unstable, in�nite impulse response (IIR) �lter.

Alternatively one may formulate an FIR inverse model W ,

ŝ(t) =

QX
�=0

W (�)x(t � �) (1.30)

and try to estimateW such that the model sources ŝ(t) = [ŝ1(t); :::; ŝdy (t)]
T

are statistically independent. Since any convolution of the individual
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model sources will keep the sources statistically independent this crite-

ria speci�es ŝ only up to arbitrary convolutions.

In order to simplify the notation and concentrate the discussion on

the diÆculties stemming from the convolution we have ignored additive

noise in this section. A complete treatment including additive noise can

be found in Parra and Spence, 2000a.

1.5.1 Cross-correlations, circular and linear convolution

First consider the cross-correlations Rx(t; t+ �) =


x(t)x(t + �)T

�
. For

stationary signals the absolute time does not matter and the correlations

depend on the relative time, i.e. Rx(t; t+�) = Rx(�). Denote with Rx(z)

the z-transform of Rx(�). We can then write

Rx(z) = A(z)�s(z)A(z)
H (1.31)

where A(z) represents the matrix of z-transforms of the FIR �lters A(�),

and �s(z) are the z-transform of the auto-correlation of the sources,

which again is diagonal due to the independence assumptions.

For practical purposes we have to restrict ourself to a limited number

of sampling points of z. Naturally we will take T equidistant samples

on the unit circle such that we can use the discrete Fourier transform

(DFT). For periodic signals the DFT allows us to express circular con-

volutions as products such as in (1.31). However, in (1.29) and (1.30) we

assumed linear convolutions. A linear convolution can be approximated

by a circular convolution if P � T and we can write approximately

x(!; t) � A(!)s(!; t); for P � T (1.32)

where x(!; t) represents the DFT of the frame of size T starting at t,

[x(t); :::;x(t + T )], and is given by x(!; t) =
PT�1

�=0 e
�i2�!�x(t + �) and

corresponding expressions for s(!; t), A(!), and W (!). In what follows

time and frequency domain are identi�ed by their argument � or !.

For non-stationary signals the cross-correlation will be time depen-

dent. Estimating the cross-correlation at the desired resolution of 1=T

is diÆcult if the stationarity time of the signal is in the order of magni-

tude of T or smaller. We are content however with any cross-correlation

estimate which gives a diagonal result for the source signals. One such

sample average is,

R̂x(!; t) =
1

N

N�1X
n=0

x(!; t+ nT )xH(!; t+ nT ) (1.33)
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We can then write for such averages

R̂x(!; t) � A(!)�s(!; t)A
H(!) (1.34)

If N is suÆciently large we can assume that �s(!; t) can be modeled

as diagonal again due to the independence assumption. For equations

(1.34) to be linearly independent for di�erent times t it will be necessary

that �s(!; t) changes over time for a given frequency, i.e. the signal are

non-stationary.

1.5.2 Backward model

Given a forward model A it is not guaranteed that we can �nd a sta-

ble inverse. In the two dimensional square case the inverse channel is

easily determined from the forward model (Weinstein et al., 1993; Thi

and Jutten, 1995). However it is not apparent how to compute a stable

inversion for arbitrary dimensions. Therefore we prefer to directly esti-

mate a stable multi-path backward FIR model such as (1.30). From the

condition for statistical independence of the model sources ŝ it follows

that their cross-power-spectra is diagonal at all times,

�s(!; t) =W (!)R̂x(!; t)W
H(!) (1.35)

In order to obtain independent conditions for every time tk we have

to choose averaging periods for R̂x(!; tk) that will lead to suÆciently

di�erent second order statistics. If we set, tk = kTN , we obtain non-

overlapping averaging periods. Overlapping averaging times could have

been chosen if the signals vary suÆciently quickly. We again compute

an LS estimate of a multi-path channel W that satis�es these equations

for K times simultaneously.

E(!; tk) =W (!)R̂x(!; tk)W
H(!)� �s(!; tk)

Ŵ ; �̂s(::) = argmin

W;�s(::)

W (�) = 0; � > Q;

Wii(!) = 1

TX
!=1

KX
k=1

kE(!; tk)k
2

(1.36)

The convolution ambiguity is resolved here by �xing the diagonal

terms to the unit �lter. Alternatively one can also place constant time

delays in the diagonal �lters which is required under some microphone

and user con�gurations (Yen and Zhao, 1999). Note also the additional

time domain constraint on the �lter size Q relative to the frame size T .
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This condition can be satis�ed by choosing short �lters or alternatively

larger frame sizes T . Up to that constraint it would seem the various

frequencies ! = 1; :::; T represent independent problems. However the

solutions W (!) are restricted to those �lters that have zero time re-

sponse for � > Q � T . E�ectively we are parameterizing Tdsdx �lter

coeÆcients in W (!) with Qdsdx parameters W (�). Due to this con-

straint we are forced to use a gradient algorithm to �nd the LS solutions

and can no longer use analytic solutions such as in the instantaneous

mixture case. We will �rst compute the gradients with respect to the

complex valued �lter coeÆcients W (!) and discuss their projections on-

to the subspace of permissible solutions in the following section. The

gradients y of the LS cost in (1.36) are

@J

@W �(!)
= 2

KX
k=1

E(!; tk)W (!) �Rx(!; tk) (1.37)

We can �nd the minimum with respect to W (!) with a constrained

gradient descent algorithm using the gradients (1.37). The optimal

�s(!; tk) for givenW (!) at every gradient step can be computed explic-

itly by setting the gradient in with respect to ��s(!; tk) to zero, which

yields �̂s(!; tk) = diag
h
W (!)R̂x(!; tk)W

T (!)
i
.

The algorithm described so far uses all of the data to be �ltered in

order to �nd the optimal separating �lter matrix. Only after that can

the data be �ltered. In many realistic scenarios an on-line algorithm

is required, whereby the �lter is immediately applied to the data and

relatively little data can be stored. An eÆcient on-line version of the

batch gradient algorithm presented here is given in (Parra and Spence,

2000b). Though a more rigorous derivation can be given it basically

amounts to removing the sum over times tk. This converts the exact

gradient into a stochastic gradient with updates �tkW (!) given by

�tkW (!) = 2�(!; tk)E(!; tk)W (!)R̂x(!; tk) : (1.38)

The current cross-power spectra R̂x(!; tk) is estimated as a running

average. In order to improve the convergence speed of the on-line algo-

rithm we propose in (Parra and Spence, 2000b) an variable learning rate

y For any real valued function f(z) of a complex valued variable z the gradients
with respect to the real and imaginary part are obtained by taking derivatives
formally with respect to the conjugate quantities z

�, ignoring the non-conjugate

occurrences of z, i.e.,
@f(z)
@<(z)

+ i
@f(z)
@=(z)

= 2
@f(z)
@z�

(Brandwood, 1983; J�anich, 1977) .
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�(!; tk), which is motivated by second derivatives of the cost function.

�(t; !)�1 =
X
j

@2 kE(t; !)k
2

@W �

ij(!)@Wij(!)
= 2kW (!)R̂x(t; !)k

2 : (1.39)

This e�ectively amounts to an adaptive power normalization in each

frequency bin. In our experiments the resulting updates were stable and

lead to convergence after processing only a few seconds of data.

1.5.3 Permutations and constraints

Note that arbitrary permutations of the coordinates for each frequency

! will lead to the same error E(!; tk). Therefore the total cost will not

change if we choose a di�erent permutation of the solutions for each

frequency !. This seems to be a serious problem since only consistent

permutations for all frequencies will correctly reconstruct the sources.

Arbitrary permutations, however, will not satisfy the condition on the

length of the �lter, W (�) = 0 for � > Q� T . E�ectively, requiring zero

coeÆcients for elements with � > Q will restrict the solutions to be

continuous or \smooth" in the frequency domain, e.g., if Q=T = 8 the

resulting DFT corresponds to a convolved version of the coeÆcients with

a sinc function 8 times wider than the sampling rate.

We can enforce the �lter size constraint by projecting the uncon-

strained gradients (1.37) to the subspace of permissible solutions. The

proper projection is implemented by transforming the gradient into the

time domain, zeroing all components with � > Q, and transforming back

to the frequency domain. The unit gain constraint on diagonal �lters is

simply enforced by keeping the �lter coeÆcient constant to Wii(!) = 1.

The constraint on the �lter size Q versus the frequency resolution

1=T links the otherwise independent frequencies, and picks a particular

permutation for the frequency permutation problem. In addition, it is a

necessary condition for equations (1.35) to hold to a good approximation.

Note also that it does not limit the actual �lter size, as in principle one

can choose an appropriately large frame size T for any given Q.

As we will see in the next section the current continuity condition on

the �lters gives acceptable performance in a variety of con�gurations.

More recently however we have established that this constraint in fact

may not be appropriate for all circumstances (see also work by Ikram

and Morgan, 2000). In principle, there is no theoretical argument why

smooth �lters will give the appropriate separation �lters. In fact evi-
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dence to the contrary may exist (Liavas and Regalia, 1998). Selecting

appropriate permutations remains a subject of current research.

1.5.4 Separation performance in real room environments

We have applied the algorithm presented in the previous section in a

variety of situations. The following performance results are given as the

ratio between the power of the signals and the power of the remaining

cross-talk, which is commonly referred to as the Signal to Interference

Ratio (SIR). The separation performance varies depending on the partic-

ular con�guration. We obtained an improvement of the SIR of anywhere

between 0 to 18dB. We studied the dependence on the type and number

of microphones, the number of sources, the user and microphone loca-

tions, the size of the room, the size of the �lter, and other algorithm

parameters.

A �rst example on signals that are publicly available is shown in �g-

ure 1.3. The graph shows the results for varying �lter sizes on the

separation of two competing speakers recorded with two microphones.

The improvement in SIR can be as high as 15dB for recordings ob-

tained in an oÆce room using uni-directional (cardioid) microphones

(upper curve). Separating two speakers from the recordings in a sec-

ond room with omni-directional microphones seems more challenging

(lower curve)y. As expected, the performance initially increases with

increasing �lter size, as the inverse of the room can be modeled more

accurately. However, larger �lters may require more training data, and

so the performance eventually decreases given the constant amount of

data.

We observed in further experiments that separation works better in

large conference rooms than in small oÆce rooms with stronger re
ecting

walls, most likely due to the increased reverberation. This was con�rmed

with simulated environments of varying size (Parra and Spence, 2000a)

The SIRs in Figs. 1.3 do not change smoothly, which may be explained

by the fact that the algorithm is not optimizing the SIR directly but

instead multiple decorrelations. Also, the gradient algorithm may be

reaching di�erent local minima of the diagonalization criterion.

Another interesting question is how the performance improves if we

use additional microphones, given a constant number of sources. Figure

1.4 shows the performance in separating two simultaneous speakers using

y The data for the �rst example is available from Parra, 1998 and for the second
example from Schoebben, 1998
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Fig. 1.3. Separation in real room: Performance for two speakers recorded
with two microphones in two di�erent oÆce environments as a function of sep-
aration �lter size Q and T=Q = 8. Upper curve: uni-directional microphones
in a 3m� 3:6m� 2:3m room, 30 s recordings at 8KHz, 15 s alternating and
15 s simultaneous speech. Lower curve: 10 s simultaneous speech recorded at
16KHz in a 4:2m� 5:5m� 3:1m room with omni-directional microphones.

a variable number of microphones. In this experiment we used 8 cardioid

condenser microphones arranged as an equidistant linear array of about

65 cm length. The results are compared to the SIR of simple broadside

and end-�re beams constructed using all 8 microphones. While one user

is at about 230 cm distance directly at broadside the other user is located

at di�erent angles relative to the broad-side and at di�erent distances

from the array. The data was sampled at 16 kHz with 10s for training

and 10s for testing and we used K = 5; Q = 1024; T = 4092.

Finally we want to note that the implementation of this algorithm in

C runs in real time on a 155 kHz Intel Pentium processor for a 2 input,

2 sources problem at 8 kHz sampling rate and T=2048.
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