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Purpose: To develop and evaluate an open-source deep learning model for detection and localization 
of breast cancer on MRI. 

Materials and Methods: In this retrospective study, a deep learning model for breast cancer 
detection and localization was trained on the largest breast MRI dataset to date. Data included all 
breast MRIs conducted at a tertiary cancer center in the United States between 2002 and 2019. The 
model was validated on sagittal MRIs from the primary site (n = 6,615 breasts). Generalizability was 
assessed by evaluating model performance on axial data from the primary site (n = 7,058 breasts) 
and a second clinical site (n = 1,840 breasts). 

Results: The primary site dataset included 30,672 sagittal MRI examinations (52,598 breasts) from 
9,986 female patients (mean [SD] age, 53 [11] years). The model achieved an area under the receiver 
operating characteristic curve (AUC) of 0.95 for detecting cancer in the primary site. At 90% 
specificity (5717/6353), model sensitivity was 83% (217/262), which was comparable to historical 
performance data for radiologists. The model generalized well to axial examinations, achieving an 
AUC of 0.92 on data from the same clinical site and 0.92 on data from a secondary site. The model 
accurately located the tumor in 88.5% (232/262) of sagittal images, 92.8% (272/293) of axial images 
from the primary site, and 87.7% (807/920) of secondary site axial images. 

Conclusion: The model demonstrated state-of-the-art performance on breast cancer detection. Code 
and weights are openly available to stimulate further development and validation. 
 
©RSNA, 2025 

An open-source deep learning model developed and trained on the largest breast MRI dataset to date 
achieved state-of-the-art in performance in breast cancer detection and localization. 

Abbreviations 

AI = Artificial Intelligence, AUC = Area Under the Receiver Operating Characteristic Curve, CNN = 
Convolutional Neural Network, CI = Confidence Interval 



	
 

	

Key Points:  

• A 2D CNN trained on a uniquely-large breast MRI dataset achieved state-of-the-art 
performance (AUC = 0.95), which is comparable to radiologist performance. 

• The model generalized well across acquisition orientations and clinical sites. 

• Open-source code and pretrained model weights are made publicly available. 

Breast cancer remains a leading cause of cancer-related deaths among women in the United States 
(1). Early detection is crucial for successful treatment and improved patient outcomes (2). For 
women at high risk of developing breast cancer, annual MRI screening is recommended in addition 
to mammography (3). Breast MRI is also used diagnostically when a tumor is suspected based on 
clinical findings, mammography, or ultrasound. It is effective for early breast cancer detection (4), 
including in women with dense breast tissue where mammography may be less reliable. 
Supplemental breast MRI use is expected to rise following recent recommendations to screen women 
with extremely dense breasts (5). 

Breast MRI interpretation is time-consuming and requires specialized training, as radiologists must 
review multiple slices in each volume. Automated reading has the potential to assist radiologists by 
identifying MRI slices most likely to contain a tumor (6) or triaging low-probability images that do 
not require reading (7). Given that three out of four biopsies are negative in routine clinical practice 
(8,9), reliable prediction of negative outcomes through automation could also help reduce the biopsy 
burden. 

There has been substantial progress with deep learning models in radiology (10–18), with the ability 
to detect subtle patterns and abnormalities by analyzing large datasets. This progress is most evident 
in mammography, where population-wide screening programs have generated large datasets 
containing hundreds of thousands of images (19–22), enabling the development and validation of 
accurate models and fueling a growing interest in automation. In contrast, breast MRI screening 
reaches a smaller population, resulting in more limited datasets. Therefore, model performance in 
breast MRI has yet to consistently match that of radiologists and often excludes complex cases, such 
as those involving implants or postsurgical changes (23,24). Moreover, most existing models provide 
only a probability of malignancy (10) without localizing the area of concern on MRI, limiting their 
practical utility for radiologists. 

Modern deep learning models contain a large number of parameters, making them prone to 
overfitting when trained on small, single-site datasets, which may limit generalizability to other sites 
(25–27). This is particularly relevant for MRI, where image acquisition parameters can vary 
significantly between institutions. Even within a single institution, temporal changes, such as a shift 
from sagittal to axial-plane acquisition can introduce variability (28). To date, only two published 
studies have included multisite validation for breast cancer detection in MRI (10,29). Cross-site 
validation remains challenging, largely because most trained models have not been publicly released, 
with one recent exception (10). Additionally, performance may be constrained by the relatively small 
size of available datasets, typically limited to a few hundred examinations (30–33).  

This study aimed to develop an open-source deep learning model for MRI-based breast cancer 
detection trained on a large dataset comprising tens of thousands of examinations from Memorial 
Sloan-Kettering Cancer Center in New York (MSKCC). The model was validated across different 
imaging planes and clinical sites, including an external dataset from Duke University (34). The 
model was designed to both detect and localize the cancer, thus aiding radiologists during 



	
 

	

interpretation. By making the model and its parameters openly available, we aim to foster further 
research and development in this field. 

Materials and Methods 
Study Sample and Data Partition 
The use of this retrospective data were approved by the institutional review board with a waiver of 
informed consent, and all procedures were HIPAA compliant. Identifiable patient information was 
removed, and MRIs were saved with anonymized identifiers before analysis.  

We used three distinct datasets for training and testing from a primary and secondary site (Fig 1). 

Primary site.— 
Data included all breast MRIs conducted at a MSKCC between January 2002 and December 2019 in 
women. The inclusion criterion was a complete sequence of DCE-MRI and available pathology or 
clinical follow-up of two years. Data included both screening and diagnostic imaging with multiple 
examinations for each screening patient. Data were excluded for benign breast images from 332 
screening patients who eventually developed cancer to avoid potential false negatives. Primary site 
data were then separated into sagittal and axial examinations (details in Table 1 and below). To 
assign labels for each breast, bilateral examinations are separated into right and left breasts. MRIs 
were labeled as "malignant" when there was biopsy-proven cancer and "benign" if there was no 
cancer diagnosis within two years of clinical follow-up. Two years is the standard follow-up period 
for treatment studies, e.g (36,37). and more stringent than previous deep-learning studies when 
labeling healthy breasts (10). Model performance was evaluated on individual breasts as well as 
examinations. 

Primary site.—, sagittal.—-plane examinations.— (training.—, validation, testing) 
Sagittal data included 38,005 examinations from 2002 and 2014 (31,564 screening, 6,015 diagnostic, 
426 unknown or N/A) from 12,329 patients. Counting each breast individually yielded 65,105 
sagittal breast images with 2,690 malignant images. This dataset was drawn from the same patient 
cohort reported in previous work (35), used to develop a lesion segmenter, and is otherwise 
independent from this study. This data were randomly divided by patient into training, validation, 
and test sets (90/10 for training and test, and subsequently 90/10 for training and validation patients). 
This dataset included radiologist segmentation in 2D for the slice containing the largest (index) 
cancer for all 2,690 malignant breast images (termed the "index slice"). Radiologists selected a single 
index-slice per breast showing the largest tumor extent. 

Primary site.—, axial.—-plane examinations.— (testing) 
To evaluate the model’s performance on a different imaging protocol, axial MRIs, excluding patients 
from the sagittal cohort were used. This dataset comprised 3,873 examinations from 2013 and 2019 
(3,069 screening, 720 diagnostic, 84 unknown or N/A) from 3,219 patients and 7,058 breasts. The 
dataset contained 688 malignant and 6,370 benign breast images. Volumetric segmentation generated 
by radiologists for the index lesions was available for 293 of the malignant breasts. Cancer 
localization could only be evaluated on this subset. 

 



	
 

	

Secondary site.—, axial.—-plane examinations.— (testing) 
Performance was also evaluated on axial MRIs from a secondary clinical site, using a public dataset 
released by Duke University (34). This dataset included 922 axial examinations from patients with 
confirmed breast cancer, excluding two examinations due to issues identifying pre-and postcontrast 
images (cases 120 and 596). This dataset included pathology information and radiologist annotations 
on the extent of the index lesion in one breast. This was provided as a 3D bounding box, only for one 
lesion, even if there was multicentric or bilateral breast cancer present. “Malignant” breast images 
were those with malignant pathology (n = 948, as some examinations had malignancy in both 
breasts). Contralateral breast images without malignant pathology were labeled as “Benign” (n = 
892). 

Model Architecture 
We used a conventional 2D convolutional network designed to detect breast cancer in the 3D 
volume, by assigning a probability of containing cancer to each 2D sagittal slice of a breast (Fig 2). 
The maximum probability across all slices is used as the prediction for the whole breast. Localization 
performance is evaluated in terms of the distance of the maximum probability slice from the 
reference standard provided by radiologists on the location of the cancer. The inputs to the network 
are three input channels capturing dynamic contrast enhancement (T1w postcontrast, DCE-in, DCE-
out) for the corresponding 2D slice. The model consisted of thirteen 2D-convolutional layers (3 × 3 
kernel size), each followed by batch normalization, ReLU activation. A Max Pooling layer was 
added after every two convolutional layers for a total of 5 downsampling steps. This mapped the 
input (of dimensions 512,5,12,3) to image features (of dimension 16,16,252), which were flattened, 
processed by one dense layer, and then concatenated with clinical features, ending in two final dense 
layers and a Softmax activation. In total, this network had 4,126,294 trainable parameters. Code and 
model weights can be accessed at: https://github.com/lkshrsch/BreastCancerDiagnosisMRI. 

Data Pre-processing and Harmonization 
Preprocessing followed our previous work in segmentation (35). Briefly, pre-and postcontrast T1-
weighted images were coregistered using NiftyReg (38), and dynamic contrast enhancement was 
summarized into images capturing initial contrast uptake (DC-in) and washout (DC-out), alongside 
the first postcontrast T1-weighted image (T1-post). These three channels were normalized by 
dividing by the 95th percentile of the precontrast T1-weighted image in each examination. To adjust 
for interchannel differences, each channel was divided by its 95th percentile across the training set. 
The sagittal MRI data had varying in-plane resolutions (0.4 mm to 0.8 mm). Low-resolution images 
were upsampled by a factor of two for harmonization. Axial images were resampled to match a 
sagittal in-plane resolution of 0.4 mm and separated into left and right breasts. All images were 
cropped to 512 × 512 pixels, ensuring the breast was centered. For the axial examinations, the 
network operated on these resampled sagittal images. 

Demographic Data 
Demographic information included age and 11 categorical variables with one-hot-encoding: Family 
history of breast cancer (yes, no), ethnicity (Hispanic or Latino, not Hispanic, unknown); and race 
(Asian-far east/Indian subcontinental, black or African American, native American/American 
islander, native Hawaiian or Pacific islander, white, unknown). All information was self-reported, 
with missing ethnicity and race imputed as "unknown." 



	
 

	

Training 
The model was trained using index slices from malignant images as positive examples. As negative 
examples, we selected the center slice and one randomly selected slice from benign images. All 
models were trained using a focal loss (39) with alpha = 5, using the” Adam” optimizer (40) with 
learning rate of 1e-5. All models were trained for 100 epochs with early stopping (Fig S1), and the 
network weights with the lowest validation loss were saved for evaluation. Unless otherwise 
specified, all models were trained with data augmentation, consisting of random rotation within 60 
degrees, random shear of scale 0.1, random horizontal and vertical flips, and random intensity 
scaling in range 0.8–1.2, all implemented using the TensorFlow preprocessing ImageDataGenerator 
library. 

Validation and Model Selection 
Various model architectures and hyper parameters were compared based on their AUC performance 
on the sagittal validation set (Fig S2). Comparisons included different loss functions (binary-cross 
entropy vs focal loss; Fig S2A), the effect of data augmentation (Fig S2B), and training data sizes 
(10%, 50%, 100% of the whole data (Fig S2C). Adding the contralateral breast as input (Fig S2D) 
and comparing the architecture to ResNet50 (with and without ImageNet pretrained weights) were 
also tested (Fig S2A). Fine-tuning the pretrained ResNet50 outperformed training it from scratch, but 
the CNN, trained from scratch with demographic information, achieved the best validation-set 
performance. Adding the contralateral breast did not significantly improve performance and was 
excluded from the final model. Data augmentation substantially boosted validation set performance 
and was included in the final model training. 

Categorization of Image Quality in Sagittal Test Set 
The sagittal test set was visually inspected (blinded to labels and predictions by LAH, 6 years of 
experience with breast MRI) to categorize image quality and determine its effect on performance. 
Categories that could occur simultaneously included biopsy clips, implants, large postsurgery 
changes, and poor image quality (blurriness, movement or fat-saturation artifacts, enhancing nipple 
tissue). 

Statistical Analysis 
Performance was evaluated using AUC. Bootstrapped confidence intervals for AUC were obtained 
by resampling with replacement subjects and the predicted probabilities 1,000 times. Confidence 
intervals were then computed from the 2.5 and 97.5 percentiles of the AUC values derived from each 
data drawn during bootstrapping. 

AUC differences between examination categories were assessed using a bootstrap sample. All 
images were combined, ignoring categories, and randomly drawn with replacements to match 
benign/malignant numbers in categories. AUC differences from this bootstrap sample were used to 
compute P values in a one-sided test, assuming conservatively that the presence of these clinical and 
imaging abnormalities worsenes model performance (Fig S3). Wilcoxon signed-rank tests and 
Pearson correlation tests were performed with the scipy.stats package in Python (v3.1). A P value of 
less than 0.05 was considered statistically significant. 

 



	
 

	

Results 
We trained deep networks with various configurations using the sagittal examinations from the 
primary site. The primary site dataset included 30,672 sagittal MRI examinations (52,598 breasts) 
from 9,986 female patients (mean [SD] age, 53 [11] years; range 13–93, SD 11, Fig 2 and Table 1 
for detailed clinical characteristics). The AUC measured on a validation set showed the benefit of the 
large data size, 2D data augmentation, and superiority of the CNN over a ResNet50 (Fig S2). Based 
on this, we selected for final testing a 2D deep CNN (Fig 2) trained with data augmentation, focal 
loss function, and demographic information. 

Detection Performance on Sagittal Images 
Evaluation on a random subset of patients not included in the training set (6,615 breast sagittal 
images, 262 with biopsy-confirmed cancers) demonstrated an AUC of 0.95 (CI: 0.93–0.96) (Fig 3A). 
Evaluating results by the outcome of the examination instead of each individual breast achieves an 
AUC of 0.94 (Fig S4A). We also evaluated results using only the first examination for screening 
patients to rule out repeated measures and obtain the same AUC of 0.94 (Fig S5A). All examinations 
underwent routine clinical Breast Imaging Reporting & Data System (BI-RADS) assessment by 
radiologists, and the estimated cancer probability generally increased with the BI-RADS score (Fig 
S6), supporting internal validity of the model’s prediction. A network trained on demographic 
information alone achieved an AUC of 0.60 (CI:0.56–0.63) (Fig S2A). Of the demographic variables 
only family history and unknown race and ethnicity were individually associated with outcome 
(Table S2). 

Generalization of Detection Performance to Axial Images 
MRI volumes have a higher in-plane resolution. While the training dataset primarily consisted of 
sagittal images (higher resolution in depth and lateral directions), current clinical practice often uses 
axial acquisition. To assess the model’s generalization to axial images (higher lateral and vertical 
resolution), we resampled axial images in the sagittal plane to match the resolution of the training 
data, and processed them with the same trained model. Without fine-tuning, the model achieved an 
AUC of 0.92 (CI: 0.91–0.93) on the primary site axial data (n = 7,058 breasts, 688 cancers) (Fig 3B) 
and an AUC of 0.92 (CI: 0.91–0.93) on axial scans from a secondary site (n = 948 malignant, n = 
892 benign) (Fig 3C). Because the axial data from the primary site includes screening data, there are 
multiple samples from the same patient. Removing this correlation and evaluating results only 
considering the first examination, the model achieves a performance of 0.90 (Fig S4B). Similarly, 
when only evaluating performance based on examination outcomes instead of individual breasts, the 
model achieves an AUC of 0.92 (Fig S5B). Data from the secondary site already consist of single 
patients, and the outcome of all examinations is positive, therefore these evaluations cannot be 
applied. 

Cancer Localization 
The model estimates cancer probability for each 2D slice in the MRI volume (Fig 2). The slice with 
the maximum probability localizes the tumor. To determine the accuracy of this localization for the 
sagittal data from the primary site, we used the 2D segmentation provided by radiologists for the 
index lesion, and extended these to 3D using volumetric automatic segmentation (35). The model’s 
maximum probability slice intersected the lesion volume in 88.5% (232/262) of breasts (Fig 4A). 



	
 

	

Additionally, the maximum probability slice correlated with the index slice provided by the 
radiologist (Pearson correlation r = 0.87, P < .001, n = 262, Fig S7). 

For axial data, the maximum probability slice intersected the 3D segmentation provided by 
radiologists in 92.8% (272/293) of breasts from the primary site (Fig 4C) and the bounding box 
around the cancers in 87.7% (807/920) of breasts from the secondary site (Fig 4B). 

Post Hoc Exploratory Analyses of Test Case Subsets 
We conducted exploratory analyses on subsets of the sagittal test data to further characterize the 
model’s performance. To assess its ability to predict biopsy outcomes, we evaluated the performance 
on the subset that received biopsies (BI-RADS 4&5, n = 578, 94 cancers), achieving an AUC of 0.86 
(Fig S8). Given that this subset consisted only of suspicious cases requiring biopsies, a lower 
performance is expected. 

To determine the robustness of the model, we analyzed performance on cases typically excluded 
from previous studies, such as implants and imaging artifacts (10,41). All images were categorized 
into one of 4 categories (Table 2). For categories with both benign and malignant images, we 
evaluated AUC and assessed if performance differed significantly between breasts with or without 
the category (eg, presence or absence of biopsy clips). We found that performance was comparable 
across all these categories. 

Discussion 
We demonstrated that training a 2D CNN from scratch with an uniquely large MRI dataset can lead 
to a new state-of-the-art performance in breast cancer detection (Table 3). Performance benefitted 
also from efficient implementations of 2D data augmentation methods. Notably, we leveraged 
information from radiologists regarding the location of the cancer along one dimension (slice number 
with the index lesion). This information is considerably more informative than a single overall 
diagnostic label for the entire volume. This allowed us to design a network that highlights the image 
most likely to contain a tumor. In doing so, the network provides interpretable results that may assist 
radiologists in their diagnostic workflow. 

This work addresses several limitations of previous studies: data size, case exclusions, out-of-plane 
and cross-site validation, interpretability, comparison with radiologist performance, and public 
release of the trained model. We will discuss each aspect in turn, while providing an overview of 
published results on deep learning-based breast cancer detection in MRI (Table 3). 

A key distinguishing factor of this study is the size of the dataset used. Recently, curated MRI 
datasets have grown from a few hundred (30,32,33,42) to thousands of images (10,29,41). Larger 
datasets offer greater diversity, enabling the training of large models from scratch, as we have shown 
here (Fig 5). 

In contrast, previous studies (23,30,32,33,41,43) with smaller datasets relied on fine-tuning 
pretrained models from unrelated tasks, like ImageNet or Kinetics-400 (44). However, features 
extracted by such models may differ significantly from those needed for analyzing 3D MRI images. 
Some studies have shown that models trained on just over a thousand examinations can outperform 
those pretrained on ImageNet (23). Others have shown that fine-tuning a pretrained model can 
improve performance as compared with training from scratch, even when a larger MRI dataset is 
available (10). Our validation set analysis found that fine-tuning ResNet50 trained on ImageNet 
numerically outperformed training it from scratch, supporting the view that pretrained models do 



	
 

	

help, even if the imaging domains are quite distinct. However, the simpler CNN model, trained from 
scratch, outperformed a ResNet50, showing that with enough data the model architecture becomes 
less significant. 

Unlike many studies that exclude difficult cases like breast implants, postoperative changes, or 
imaging artifacts (10,23,24), our training included such examples. We hypothesized that the larger 
training set would encompass enough of these anomalies to avoid exclusions. Indeed, our overall 
performance (AUC = 0.95, CI: 0.93–0.96) exceeded the top-performing AI study to date (10) (AUC 
= 0.92, CI: 0.92–0.93), despite including previously excluded cases. Beyond the obvious benefit of 
providing detection for all cases, avoiding exclusions is essential for handling tens of thousands of 
examinations, as manual visual inspection is impractical. Full automation also eliminates the need 
for manual region selection, as required in previous studies (23,43). 

This study trained a model using sagittal MRI scans because this was the largest dataset available to 
us at this time. Since MRI resolution is higher in-plane, axial test set images were upsampled 
vertically. Nonetheless, the model performed well on both primary and secondary site axial scans 
without fine-tuning, demonstrating its ability to generalize beyond the training data. Notably, it 
performed well in both cancer classification and localization on axial examinations. 

Trained on individual slices without global position knowledge, the model accurately selected slices 
containing index lesions. This is evidenced by the high hit rates and correlation with the index slice 
from radiologists. While some previous models estimated the location of the tumor (29,30,33,43), 
many did not (10,23,32,41). Providing such information is crucial for integrating AI into clinical 
workflows, building confidence in its detection, and potentially guiding abbreviated radiologist re-
evaluations. 

The network’s detection performance appears to be comparable to historical data on radiologist 
performance. Among the four studies with such measures, Witowski et al (2022) (10) reported an 
average AUC of 0.89 (CI: 0.85–0.95) for five readers on 100 examinations, numerically lower than 
our model’s AUC (0.95, CI: 0.93–0.96). Other studies reported varying radiologist sensitivity and 
specificity, with our model demonstrating numerically superior specificity at those sensitivities. 
Truhn et al (2019). Dalmis et al (2019) report for the radiologist sensitivity of 98% (specificity of 
28%), and Zhou et al (2019) sensitivity of 59% (specificity of 86%). At these sensitivities, our model 
achieves a numerically superior specificity (62% and 99%, respectively). One outlier is the study by 
Truhn 2019 (43), reporting a higher radiologist (AUC 0.98; 95% CI:0.96, 0.99) likely due to an 
easier curated dataset (eg, high prevalence, only large and enhancing lesions, excluding high-risk 
benign lesions). However, direct statistical comparison is impossible as datasets are unavailable and 
potential heterogeneity. While our model outperformed the existing state-of-the-art (10) when tested 
on sagittal data, performance matched that on axial test data, using a much simpler model. We expect 
performance gains when fine-tuning the model on such axial MRIs. 

This study has several limitations. First, while our dataset is uniquely large, it primarily comprises 
sagittal MRI scans from a single institution. Although the model generalized well to external axial 
scans, broader multi-institutional training would likely improve performance further. Second, the 
training approach relies on slice-level annotations, which may not be routinely available. Third, 
while we did include demographic information, we did not explore its added value in detail. Finally, 
while model performance is comparable to radiologists on retrospective datasets, a prospective 
reader study on the same data are needed for a direct comparison. 



	
 

	

Training a 2D CNN from scratch on a large and diverse breast MRI dataset enabled state-of-the-art 
cancer detection, even in challenging clinical cases. Incorporating slice-level lesion annotations 
during training improved both classification performance and interpretability by highlighting 
relevant slices. The model demonstrates generalizability across different MRI protocols and 
institutions. Future studies should explore prospective clinical validation. To this end, we are openly 
releasing source code and trained weights. We hope this will enhance reproducibility in AI for 
radiology and encourage further technical development. 
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Figure 1: Data overview for breast cancer detection model development and evaluation. 
Three datasets were utilized: sagittal data from the primary clinical site (training, validation, testing), 
axial data from the primary site (testing), and axial data from a secondary clinical site (testing). The 
sagittal dataset was partitioned at the patient level (indicated as % for each partition). No patient 
overlap existed between the primary site’s sagittal and axial data. Each box displays the number of 
patients, examinations, individual breasts (accounting for bilateral and unilateral examinations), 
malignant breasts, and malignant breasts with radiologist annotations indicating cancer location. 



	
 

	

 
Figure 2: Cancer detection and localization using AI. The input of the model (purple box) 
consists of a sagittal slice from the full 3D MRI with three channels (T1 post, Dynamic Contrast 
Enhancement (DCE)-in, Dynamic Contrast Enhancement (DCE)-out). The model (blue box) is a 2D 
deep convolutional neural network (CNN) that outputs a probability of cancer for each slice. Model 
output is evaluated in two tasks, detection and localization (yellow box). The maximum probability 
(max) is used as the prediction for the whole volume and evaluated in the detection task against the 
reference standard (pathology from the biopsy of clinical follow-up). Similarly, the slice index with 
maximum probability (argmax) serves as the estimate of tumor location and is evaluated against the 
reference standard provided as annotations on cancer location made by radiologists. 



	
 

	

 
 
Figure 3: Test set performance on sagittal data and generalization to axial data across sites. 
(A) Top: Histogram of predicted probability of cancer for all breasts in the sagittal test set from the 
primary site, color-coded by breast outcome. Bottom: ROC curve and AUC. 95 percentile bootstrap 
confidence interval shown in shaded blue. (B) Same as A but for the axial test set from the primary 
site. (C) Same as A but the axial test set from the secondary site 



	
 

	

 
Figure 4: Predicted location and lesion lateral extent: Comparison of the location predicted by 
the network (dot) relative to the lateral extent of the cancer provided by radiologists (horizontal 
lines/shading). Lateral extent indicates the range of sagittal slices that contain cancer. Vertical axis 
indicates different breasts sorted by extent. (A) Sagittal test data of the primary site (n = 262). For 
this data, lateral extent for each cancer is based on a semiautomatic segmentation. A "hit" indicates 
that the location predicted by the network falls within the lesion (blue); a "miss" indicates no overlap 
(orange). The percentage of hits is shown in blue text. Breasts are sorted by decreasing lesion size for 
both hits and misses. (B) Same as panel A but uses axial data from the secondary site (n = 920). 
Here, cancer lateral extent is determined from bounding boxes provided by radiologists. (C) Same as 
panel A but uses axial data from the primary site (n = 293). Here, cancer lateral extent is based on 
radiologist’s volumetric segmentations. Most of the large cancers missed in the Axial Primary Site 
correspond to cancers found in the left breast, which explains the rightward shift of the orange dots 
(this effect, however, is not statistically significant (binomial test: cancers = 21, left-sided = 14, 
population frequency of left cancers = 0.53 (156 of a total of 293), P = .15).  



	
 

	

 
 
Figure 5: Comparison of related studies to date. Each study is shown in terms of the size of the 
training data (number of examinations) versus performance on the internal test set of each study 
(AUC). Color indicates if studies make code and trained weights openly available (red: not available, 
orange: upon request, green: no restriction). 

 

 

 

 



	
 

	

Table 1: Summary of Patient Demographics, examination Counts, Imaging Protocol 
Distribution, Cancer Labels, and BI-RADS Categories for the Sagittal Training, Validation, 
and Test Sets, as well as the External Axial Test Set 

  Sagittal Train Sagittal Val Sagittal Test Sagittal Total Axial Total Total 

Patients 9986 (81%) 1110 (9%) 1233 (10%) 12329 3219 15548 

Race 
Asian Far East/ 
Indian Subcont 376 (3,77%) 30 (2,7%) 52 (4,22%) 458 60 (1,86%) 458 

 
Black / African 
american 533 (5,34%) 67 (6,04%) 74 (6%) 674 62 (1,93%) 674 

 
native 
american/alaska 1 (0,01%) 0 (0%) 0 (0%) 1 0 (0%) 1 

 
Native hawaiian/ 
pacific islander 3 (0,03%) 0 (0%) 0 (0%) 3 0 (0%) 3 

 White 6744 (67,53%) 753 (67,84%) 832 (67,48%) 8329 732 (22,74%) 8329 

 Unknown/Missing 2329 (23,32%) 260 (23,42%) 275 (22,3%) 2864 107 (3,32%) 2864 

Ethnicity Hispanic 459 (4,6%) 55 (4,95%) 76 (6,16%) 590 56 (1,74%) 590 

 Not Hispanic 7252 (72,62%) 797 (71,8%) 886 (71,86%) 8935 823 (25,57%) 8935 

 Other/Unknown 2275 (22,78%) 258 (23,24%) 271 (21,98%) 2804 81 (2,52%) 2804 

examinations 30672 3463 3870 38005 3873 41878 

Age, (mean, STD) 52.1 ± 11.2 51.9 ± 11.1 52.3 ± 10.8  54.4 ± 10.6  

examinatio
n Label Malignant 2114 (6,89%) 238 (6,87%) 255 (6,59%) 2607 688 (17,76%) 3295 

 Benign/Negative 28558 (93,11%) 3225 (93,13%) 3615 (93,41%) 35398 3178 (82,06%) 38576 

BI-RADS 
Category BI-RADS 0 347 (1,13%) 40 (1,16%) 44 (1,14%) 431 4 (0,1%) 435 

 BI-RADS 1 3949 (12,87%) 545 (15,74%) 534 (13,8%) 5028 870 (22,46%) 5898 

 BI-RADS 2 17712 (57,75%) 1913 (55,24%) 2182 (56,38%) 21807 2054 (53,03%) 23861 

 BI-RADS 3 3792 (12,36%) 409 (11,81%) 489 (12,64%) 4690 248 (6,4%) 4938 

 BI-RADS 4 2455 (8%) 287 (8,29%) 321 (8,29%) 3063 195 (5,03%) 3258 

 BI-RADS 5 446 (1,45%) 46 (1,33%) 72 (1,86%) 564 10 (0,26%) 574 

 BI-RADS 6 1943 (6,33%) 221 (6,38%) 224 (5,79%) 2388 492 (12,7%) 2880 

Lesion size cm (mean, STD) 1.8 (± 1.2) 1.8 (± 1.2) 1.8 (± 1.2)  2.7 (± 1.2)  

Data include race, ethnicity, age, and lesion size statistics. Data are presented as numbers 
(percentage) unless otherwise indicated. Age and lesion size are reported as mean ± SD (SD). 



	
 

	

Table 2: Model Performance with Challenging Cases 
 No Yes  

Attribute Benign Malignant AUC Benign Malignant AUC AUC Difference 

Implant 5913 260 0.95 393 2 >0.99 P  = .79 

Biopsy Clip 4347 173 0.94 1940 89 0.95 P  = .73 

Postsurgery change 6184 258 0.96 122 4 0.91 P  = .20 

Poor image quality 5091 207 0.94 1215 55 0.96 P  = .75 

Model performance did not significantly change for cases considered challenging and excluded in 
previous studies.10,23,24 "Poor image quality" encompasses various issues (see Methods) 

Table 3: Summary of Studies to date, Involved in Detection of Breast Cancer in MRI using 
Deep Neural Networks 

Publication Pretrained 
Model AUC N_Train N_Test Comments Published 

Model 
Use 
Contralateral Multisite MRI 

Protocol 

(Herent et al 
2019) 

ResNet50 
(ImageNet) 0.82 335 168 

Evaluation on single slice. 
Generates attention heatmaps 
through initial segmentation 

no yes (axial) no axial 

(Truhn et al 
2019) 

ResNet18 
(ImageNet) 0.88 1294 647 

Manual cropping of lesions. 
Radiologist performance of 
0.98. Post contrast sequence 
as RGB channels 

no unclear (no) no axial 

(Amit et al 
2017) 

CIFAR-10, 
VGGNet 0.91 1256 1256 

Requires manual selection of 
ROIs on lesions. Only BI-
RADS 2 benign and BI-
RADS 5 malignants. Only 
single lesions. No asymmetric 
BPE. Pretrained models 
performed worse than model 
trained from scratch 

no not specified no not specified 

(Hu et al 
2021) 

VGG16 
(ImageNet) 0.93 1455 535 

DCE time sequence as RGB 
channels. Manual cropping of 
lesions before input to CNN 

no no no sagittal 

(Zhou et al 
2019) No 0.86 1073 307 

Only single lesions. No 
asymmetric BPE. Only 
evident BPE 

no yes (axial) no axial 

(Verburg et al 
2022) No 0.83 9162 4581 

Triages 40% of normal breasts 
at NPV = 100% in women 
with extremely dense breasts 
(DENSE trial) 

no yes (axial) yes axial 

(Dalmış et al 
2017) No 0.81 201 160 

No spatial registration of 
contralateral. No use of 
postcontrast images 

no yes no transverse 
and coronal 

(Li et al 2017) No 0.84 80 43 Manual cropping of lesions no no no axial 

(Witowski et 
al 2022) 

3D ResNet-
18 (Kinetics-
400) 

0.92 14198 3936 No interpretability of results. under request 
case-by-case yes (axial) yes Sagittal and 

axial 

(Zhang et al 
2023) 

Mask R-
CNN and 
ResNet50 

Sens 
96% 
Spec 70% 

241 176 Outputs bounding box on 
lesion. no yes (axial) no axial 

This study No 0.95 (axial 
0.92) 

5259
8 
30672 
examinat
ions 

6615 Identifies relevant slice and 
tumor location in slice. yes yes yes Sagittal and 

axial 

	  



	
 

	

Addition of the contralateral breast: 

Radiologists normally will look at the contralateral breast whenever possible as a reference for 
symmetry in respect to breast density, amount of fibroglandular tissue and background parenchymal 
enhancement. These are some of the important biomarkers related to risk of breast cancer.45 Several 
previous works have not included the contralateral breast, or did so only indirectly through use of 
axial exams that include both breasts 10,24,29,30 (Table 2). Despite the importance of having the 
contralateral breast available for radiologists, we don’t observe any increase in performance in the 
validation set when adding to the model (using the validation set where the contralateral breast was 
available: ROC of 0.943 vs ROC of 0.943 with contralateral). We do observe a slight increase in the 
precision-recall curve (average precision without contralateral = 0.66 vs 0.68, see Table S2) 

We tested three different ways to add contralateral breast. 1) As three additional input channels 
(Table S2: CNN + Contralateral 1); 2) as a parallel pathway merched by concatenating in the 8th 
convolutional layer. This was trained by freezing the entire model and only training on the parallel 
pathway (Table S2: CNN + Contralateral 2), and 3) same as 2, but training also the layers after the 
concatenation point (Table S2: CNN + Contralateral 3). 

Model prediction by BI-RADS 

BI-RADS 1 and 2 indicate a “Negative” and “Benign” exam; BI-RADS 3 is a “probably benign” 
assessment. “Suspicious” or “highly suggestive of malignancy” findings are BI-RADS 4 and 5, 
respectively. Fig. S6-Left indicates the numbers of cases broken down by BI-RADS and detection 
for the sagittal test set from the primary site. As expected, the predicted probability of cancer 
increases with BI-RADS score (Fig. S6-Right). 

Performance on biopsied breasts 

Here we report the performance of the model in predicting the outcome of a biopsy (that was 
prompted by the MRI). To do this we included only BI-RADS 4 and 5 and obtained an AUC of 0.86. 
Other exams are not called biopsy (BI-RADS 1-3) or may already have a biopsy (BI-RADS 6). 
Performance is lower here because the exams that are excluded are easier cases, i.e. BI-RADS 2-3, 
which are easier to identify as benign, and BI-RADS 6, are known cancer that had been detected 
previously, e.g. with mammography. 

Implementation of ResNet50 

The ResNet5046 model was implemented with the tf.keras.applications library. The model has 
23,538,690 trainable parameters. Every layer has a L2 weight penalty of 1e-4 for regularization 
purposes. The last layer was not included and the input shape was set to 512x512x3 to match our 
data. Inputs are specifically pre-processed for this model by passing the data through the 
preprocessing pipeline provided by the function keras.applications.resnet.preprocess_input. For the ImageNet pre-
trained model, the input size is constrained to 221x221x3, so input data is appropriately resized. See 
Fig. S9 for examples of predictions in the re-formatted breast image. 

 



	
 

	

Focal loss and Binary Cross-entropy: 

Binary cross-entropy loss function is the standard metric used in many classification problems. 
Others have proposed the “focal-loss” function 39 for classification in the presence of class-
imbalance, which is the situation in this study. We compared the two loss functions on the validation 
set and found better performance for the focal-loss. It is interesting to compare the actual 
distributions between the two cost functions (compare Fig. 3A to Fig. S10). It is evident that the 
focal loss does not force the distributions to extreme probabilities, as more uncertain predictions are 
less heavily penalized. This is advantageous in problems with class imbalance. For the present data, 
the binary cross-entropy focuses on reducing the predicted probabilities of the majority class 
(benign), even when they are already low. Instead, the focal loss focuses on correcting a few 
examples of incorrect minority classes (malignant). Focal loss is more tolerant of uncertainty, 
whereas binary cross-entropy emphasizes confidence. 

Demographic and Clinical Factors Associated with Pathology Outcome 

We evaluated whether any of the demographic and clinical information used correlated with a 
pathology outcome. For this we performed a chi-squared test on each categorical variable (Table S3). 
Taking into account multiple comparisons, only three variables are significantly correlated: Family 
History, Ethnicity Unknown and Race Unknown. Each of these variables result in the following 
point in a ROC-curve: Family History: Specificity = 0.777, Sensitivity = 0.012. Ethnicity Unknown: 
Specificity = 0.793, Sensitivity = 0.175. Race Unknown: Specificity = 0.793, Sensitivity = 0.176. 
These results point out that in this specific high-risk population, demographic information alone 
results in poor classification and proper evaluation of the MR images is essential for this task. 

 
 
Figure S1: Training curves for monitoring overfitting and selecting the best validation-set 
performance with early stopping. Left: Loss function per training epoch evaluated on the training 
data (blue) and validation data (orange). Training was stopped early if validation loss did not drop 
further after 20 epochs (here lowest loss at 38th epoch). Right: Accuracy (at a threshold of 0.5 for the 
probability) during training shows decrease as overfitting starts occurring. 



	
 

	

 
Figure S2: Performance of different models and data sets, evaluated on the validation set. In each 
barplot the performance (vertical axis) is measured as the area under the receiver operating 
characteristic curve (AUC-ROC). A) A simple CNN performs just as well as the much larger state-
of-art model ResNet50. ResNet50 trained on ImageNet numerically outperformed training it from 
scratch (DeLong test: p=0.077, z=1.77). However, the simpler CNN model, trained from scratch, 
outperformed a ResNet50 (DeLong test: p=0.0014, z=3.19). Demographic information adds little 
information to this high-risk population. B) Data augmentation techniques for 2D images are very 
beneficial for performance, even more when there is a larger data set available. C) Increasing data 
sizes improve model performance in an asymptotic way. D) Adding contralateral breast does not 
significantly improve the AUC-ROC, although it does improve precision metric (See Table S2). 



	
 

	

 
Figure S3: Difference in performance for data quality characteristics (as in Table 1). For each 
characteristic we measure the difference in performance in terms of AUC-ROC against a null 
distribution. Here we test that the presence of clinical or imaging abnormalities is not significantly 
worse than its absence, in a one-sided test. (A): Presence or absence of biopsy clips do not affect 
model performance significantly. (B): Presence or absence of post surgery changes do not affect 
model performance significantly. (C): Presence or absence of implants do not affect model 
performance significantly. (D): Problems related to image quality do not affect model performance 
significantly. Here we account for: Image artifacts, movement artifacts, fat-saturation artifacts, and 
any other image quality problems. 



	
 

	

 
Figure S4: Performance per exam instead of breast. (A) When evaluated at the exam level, 
performance drops from 0.95 to 0.94 in the in-plane sagittal data from the primary site, and (B) from 
0.92 to 0.9 in the out-of-plane axial data from the primary site. This evaluation does not apply to data 
from the secondary site, as it already consists of one exam per patient. 



	
 

	

 
Figure S5: Results at the patient-level. For each patient, we keep only the last exam, except for 
positive findings, in which case we keep the exam at which cancer was identified. Per exam we take 
the maximum predicted value across both breasts, thereby removing any multiple entries of breasts 
or patients. This primarily reduced the many benign follow-up exams in screening patients. (A) 
Performance for the primary site sagittal data. (B) Performance for the primary site axial data. This 
evaluation does not apply to data from the secondary site, as it already consists of individual exams 
from individual patients. 



	
 

	

 
Figure S6: Distribution of cancer predictions by BI-RADS in the sagittal test set from the 
primary site. (Left) number of breasts broken down by BI-RADS. (Right) Model prediction of 
probability of cancer per breast.  



	
 

	

 
Figure S7: Correlation between AI predicted slice with maximum probability of cancer and 
the index slice selected by a radiologist. 



	
 

	

 
 
Figure S8: ROC curve for biopsied breasts only (BI-RADS 4 and 5) in the sagittal test set 
from the primary site. 



	
 

	

 
Figure S9: Fine-tuning a model pre-trained on natural images (e.g. ImageNet) will learn high-level 
features that do not apply well to clinical data. Evaluating the image of a breast MRI through a 
ResNet50 pre-trained on ImageNet extracts features that prompts the classifier to recognize the 
image as a marine animal. 



	
 

	

 
Figure S10: Use of binary cross-entropy as a loss function leads to qualitatively different results: 
Classification results in the validation set per breast. Left: ROC curve achieving an AUC-ROC of 
0.934. Right: Histogram of all samples in the validation set, ordered by predicted risk value by the 
model and color-coded by true pathology (red = cancer, green = healthy). 

Table S1: Summary of performance of different models in the validation set (n=5,892). 
Performances are measured in area under the receiver operating characteristic curve (AUC-ROC), F1 
score, and average precision measured as the area under the precision-recall curve. 

Model ROC AUC F1 Score Average 
Precision  

CNN 0.943 0.454 0.661  
CNN + 
Contralateral 
(3) 

0.943 0.58 0.677  

CNN + 
Contralateral 
(2) 

0.943 0.597 0.644  

CNN 
BinaryCrossEnt
ropy 

0.934 0.484 0.597  

ResNet50 
(ImageNet) 

0.923 0.541 0.44  

CNN 50% Data 0.917 0.373 0.52  
CNN + 
Contralateral 
(1) 

0.915 0.458 0.448  

ResNet50 0.91 0.513 0.457  



	
 

	

CNN No Data 
Aug 

0.887 0.376 0.413  

CNN 10% Data 0.835 0.426 0.375  
CNN 10% Data     
No Data Aug 0.802 0.29 0.229  
ANN 
Demographics 
(no image) 

0.602 0 0.076  

Table S2: Demographic and clinical information associated with pathology. 

Variable Chi2 p-value 

Family History of Breast Cancer 329.98 < 0.001 

Ethnicity Hispanic/Latino 0.84 0.36 

Ethnicity not Hispanic 8.932 0.002 

Ethnicity Unknown 13.528 < 0.001 

Race Asian-Far East/Indian Subcontinent 4.121 0.042 

Race Black or African American 1.9 0.168 

Race Native American-Am Indian/Alaska 0 1 

Race Native Hawaiian or Pacific Isl. 0.02 0.886 

Race Unknown 13.321 < 0.001 

Race White 3.216 0.0729 

Ages 0-10 0 1 

Ages 10-20 0.751 0.386 

Ages 20-30 8.141 0.004 

Ages 30-40 1.098 0.294 

Ages 40-50 0.061 0.804 

Ages 50-60 2.967 0.084 

Ages 60-70 0.316 0.574 

Ages 70-80 4.606 0.0318 

Ages 80-90 0 1 

Ages 90-100 0.14 0.7086 
 

	  



	
 

	

 


