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Varying Complexity in Tree-Structured
Image Distribution Models

Clay Spence, Lucas C. Parra, and Paul Sajda

Abstract—Probabilistic models of image statistics underlie many
approaches in image analysis and processing. An important class
of such models have variables whose dependency graph is a tree.
If the hidden variables take values on a finite set, most computa-
tions with the model can be performed exactly, including the like-
lihood calculation, training with the EM algorithm, etc. Crouse
et al. developed one such model, the hidden Markov tree (HMT).
They took particular care to limit the complexity of their model.
We argue that it is beneficial to allow more complex tree-struc-
tured models, describe the use of information theoretic penalties
to choose the model complexity, and present experimental results
to support these proposals. For these experiments, we use what
we call the hierarchical image probability (HIP) model. The dif-
ferences between the HIP and the HMT models include the use of
multivariate Gaussians to model the distributions of local vectors
of wavelet coefficients and the use of different numbers of hidden
states at each resolution. We demonstrate the broad utility of image
distributions by applying the HIP model to classification, synthesis,
and compression, across a variety of image types, namely, elec-
trooptical, synthetic aperture radar, and mammograms (digitized
X-rays). In all cases, we compare with the HMT.

Index Terms—Bayesian network, classification, compression,
hidden Markov tree (HMT), hidden variables, image model,
minimum description length (MDL), synthesis, tree-structured
belief network (TSBN).

I. INTRODUCTION

ONE of the primary goals of computational vision is to de-
velop mathematical descriptions of the visual world. Rel-

atively recent work on statistical regularities in natural images
[1]–[3] has led to these mathematical descriptions being cast
as probabilistic models. There are several fundamental reasons
why such models are an attractive framework for describing nat-
ural images. First, theories about the ecological basis of biolog-
ical vision need to take into account the statistical regularities
in visual scenes [4], [5]. A compact probabilistic description of
visual scenes may, therefore, provide important insight into the
representations and underlying mechanisms used in biological
vision. We will focus on a second reason: essentially all image
analysis can be formulated within the context of a probabilistic
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model. Assume one can construct a model for the probability
distribution of images given that they belong to class

. Such a model is often referred to as a generative model, as
opposed to a discriminative model of the probability
of the class given the image. Generative models enable a wide
range of applications, including, but not limited to the following.

• Classification: Using Bayes’ rule, we can compute the
class conditional likelihood of new images under the
model . Thus, if we
have a set of generative models, one for each of a set of
image classes, a discriminative model is implied.1

• Synthesis: By sampling the model for , we can
generate new images for class .

• Compression: In principle, a good model of for
the class of images provides a good code for compressing
images of this class.

We do not mean merely that one class of models can be used for
all of these applications. Rather, we can fit a single model to one
set of images and use that model for a variety of applications.
This flexibility is possible because a generative model allows us
to both evaluate the likelihood of the image and sample from the
distribution. While generative models are often used for other
data types, their use for images is challenging due to the high
dimensionality and rich structure of the data.

An important class of generative image models captures
multiscale, hierarchical dependencies of structure in images
through the use of tree-structured arrangements of the depen-
dencies between the model’s variables, with the root at the
coarsest resolution and the leaves at the finest. These have been
called tree-structured belief networks (TSBNs) [6]. Trees have
the disadvantage that they are not invariant to translations or
rotations, but they make the graph of dependencies acyclic, so
that computations are greatly simplified. In addition, the tree
naturally captures the persistence of structure across scale that
is commonly observed in images, and provides relatively direct
dependencies between distant parts of the image.

If the hidden variables in a tree-structured model take values
in a finite set, most computations can be carried out exactly. The
earliest such model specifically for distributions of natural im-
ages was the hidden Markov tree (HMT) of Crouse et al.[7].2

The HMT uses binary-valued hidden “state” variables at the
nodes of the tree. These states determine the range of coefficient

1To evaluate this expression, we also need to know Pr(C) for all C ,
which is merely a finite set of real numbers. We can then compute Pr(I)
as Pr(I jC) Pr(C). The converse operation, computing Pr(I jC) as
Pr(C j I) Pr(I)=Pr(C), requires that we learn Pr(I).

2Although Crouse et al. first coined the term “hidden Markov tree” for their
model, it is a good literal description for many of the tree-structured models in
the literature.
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magnitudes by specifying which of two variances is used in a
normal distribution of the coefficient at that node. Thus, the dis-
tribution of a coefficient is a two-component mixture of Gaus-
sians model, with state probabilities that depend on the state at
the parent node in the tree. For images, the HMT uses a sepa-
rate hidden variable tree for each type of wavelet subband, i.e.,
the horizontal, vertical, and diagonal high-pass bands. These
models have been successfully applied to several problems, such
as image enhancement and texture segmentation [8], [9].

In designing the HMT, Crouse et al. took care to limit the
complexity of the model, especially the number of parameters,
in order to avoid over-fitting. The hidden variables are strictly a
means to represent wavelet coefficient magnitude and its persis-
tence across image scale. We suggest that the hidden variables
can represent more local image structure. Using more than two
values (as suggested by Crouse et al.) would allow the hidden
variables to better fit the marginal distributions of single coef-
ficients. If we use a single hidden variable at a location to con-
dition the entire vector of local coefficients, that variable could
also represent orientation.3 In addition to orientation and scale,
other local image structure can be expressed as relationships be-
tween elements of the coefficient vector, such as the presence of
edges, lines, corners, more general parts of a texture, etc. Be-
yond local structure, a hidden label that is not at the leaf of the
tree can represent common information among all of its descen-
dants. Thus, much more of the inherent complexity in natural
images could by represented in the hidden labels of TSBNs.

We contend that images can support the use of models with
this additional complexity, since an image effectively presents
us with many examples. A 256 256 pixel image has 65 536
pixels, 16 384 positions in the first level of a wavelet decomposi-
tion, 4 096 in the second, and so on. Although not entirely inde-
pendent, each of these positions is another example for learning
model parameters.

To explore fitting the complexity of a model to a set of images,
we present what we call the hierarchical image probability (HIP)
model. We allow HIP models to have different mixture compo-
nents and different numbers of components at each level in the
tree. However, we use the same components everywhere within
a given level, a constraint that is often referred to as “tying” in
the HMM literature [10], and is also used in the original HMT.
So we tie across position but not scale. We choose the number
of mixture components within each level with the minimum de-
scription length (MDL) criterion [11], [12]. Even with tying to
reduce the number of parameters, we obtain more than ten thou-
sand parameters when fitting to data sets with several tens of
images. The test set results of Section III and the MDL criterion
agree that the models with these very large numbers of parame-
ters are optimal. The additional complexity allows HIP models
to capture subtleties of images that are missed by the HMT.

In the following, we present the HIP model and its applica-
tion to a variety of image analysis problems. In Section II, we
present the model in detail, including training and MDL-based
algorithms for choosing the numbers of mixture components.
In Section III, we present the results of experiments with HIP

3The HMT’s set of three binary variables at a node can represent some ori-
entation information, though it is difficult without dependencies between these
variables.

Fig. 1. Notation for variables in the HIP model. Shown are images from
a wavelet decomposition, including low-pass bands I , subbands G, and
unsampled subbands F.

models. For each of three very different data sets, we fit a model
to images of a class and then use that model for several dif-
ferent applications. We show that MDL is effective in choosing
a model’s complexity so that it generalizes well. In all of the
applications we compare with the HMT.

II. HIP MODEL

In this section, we present the HIP model in some detail. In
Section II-A, we give a basic presentation of the HIP model. We
then discuss other tree-structured models used for image pro-
cessing, and give a detailed comparison of the HIP model and
the HMT (Section II-B). Finally, we present an EM algorithm
for training HIP models (Section II-C) and procedures for archi-
tecture selection using MDL (Section II-D).

A. Basic Structure

To motivate the HIP model’s structure we present it in terms
of the conditional independence of the variables within it. A
similar description would apply to most TSBNs.

We first represent structure in the image from different scales
by applying a wavelet decomposition. The wavelets filters are
applied to the image to obtain a set of images (Fig. 1).
These filters are band or high-pass, so the have the low fre-
quency content suppressed. The and a low-pass filtered ver-
sion of (filtered with the scaling function) are then subsam-
pled to construct a set of smaller images or subbands , which
consists of a low-pass subband and bandpass or high-pass
subbands . We write this mapping from to as .

If the wavelet transform is critical and invertible, this is a
change of variables.4 Consequently, we can write the distribu-
tion over images as , since the determi-
nant is the Jacobian for the change of variables. We factor
this and obtain . Repeating
this change of variables on successive and factoring gives

(1)

4Note that there may be nonwavelet transforms that also satisfy these criteria
and could be used instead.
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We choose so that and have a single pixel. Note
that there are no assumptions needed to derive (1) other than
that the wavelet transform is a change of variables. However,
conditioning finer-scale structure on coarser structure is an in-
tuitively appealing choice common to all TSBNs.

The factors in (1) are still likely to be very complex distribu-
tions. To further simplify, we factor each over position and re-
duce the conditioning variables to some local part of . For
the latter, we choose the vector of coefficients from po-
sition in the unsampled images .5 This vector describes
local image structure at a coarser scale than .6 This gives

(2)

(3)

Here, we have introduced several notations. To indicate the set
of positions within level of the decomposition, we have written

. We use because that low-pass image has the same
dimensions as . We will often write this simply as a product
over , since the range of should be clear from context. For
the vector of wavelet coefficients from at position , we
write . Finally, to simplify notation, we have moved the
dependence on position to the right in (3), writing it as if
it were a conditioning variable. We will not be discussing the
distribution of conditioned on for , so this
should not cause confusion.

The factoring over position in (3) represents two assump-
tions. First, it assumes that the for different are
independent of each other given , i.e.,

. Second, it assumes that depends
only on out of all of .7 These assumptions are not
strictly correct for any but artificial images. For example, we
can argue that the for different are not independent,
though the dependence between pairs decreases with distance
[15]. Such dependencies can be caused by the presence of an
object that is covered by a single texture. Observing this texture
at one location tells us that other locations within the object’s
typical size are likely to share that texture. This will appear
as a dependency between the coefficient vectors at distant
locations. If the object is not identifiable in , this lower
resolution image does not imply the presence of that texture.
Therefore, conditioning on does not make the coefficient
vectors at different locations independent.

To reintroduce some of the dependencies that would be lost
by these assumptions, we add a discrete hidden variable or label

at each position in every level . We use to denote
the image of these labels at level . So, we are assuming that
the are conditionally independent at different given the
hidden variable and the observed (Figs. 2 and 3).

5Note that, for l = L, there is no F , since I is a single pixel.
In this case, we either model the joint distribution Pr(g ; I ), or use
Pr(G j I ) = Pr(g ), choosing not to condition on the single value of
I .

6We could have used g at the parent of x instead, but chose f because
it avoids some of the aliasing from which wavelets suffer [13], [14].

7We have sometimes included the value of of I at x, so g is also allowed
to depend on local brightness as well as f .

Fig. 2. Conditional dependencies between images in the HIP model. For sim-
plicity we are not including the deterministic dependency ofF onG and I .

Fig. 3. Conditional dependencies between node variables in the HIP model.
For simplicity we include only one parent and its children in a one-dimensional
(1-D) model, and we do not include the deterministic dependency of f on g
and i .

To carry the information about the dependencies between
the s across scale and position, we make depend on the
label at the parent position in a quad-tree arrangement
in the wavelet decomposition.8 This introduces the factors

. By this expres-
sion, we mean the probability of the label at taking on the
value given that the value of the label at the parent position

is . The probability does not depend on the position
, but we include it to make it clear that depends only on the

label at the parent position. Furthermore, at each level we
allow the labels to take on a different number of values ,
which we will choose by fitting to the data. Within a level the
same set of labels are used everywhere, that is, we tie across
position. However, we do not tie across scale, so we allow the
parameters at each level to be different.

Combining (1) and (3), and adding the hidden labels, gives

(4)

8In the quad-tree graph, the node at location Par(x) = (i; j) in level l + 1
has children at x 2 f(2i; 2j); (2i+ 1; 2j); (2i; 2j + 1);2i+ 1; 2j + 1)g in
level l.
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With some assumptions and abuses of notation we can simplify
this to

(5)

To obtain the latter equation, we drop the determinants, since
for many applications we only need relative likelihoods. Also,
when interpreting this expression, we need to remember that
there are no quantities or , so we do not condition
on these. Finally, we drop . Ignoring should be
adequate for some applications, or we could include it in the
distribution for , giving for the

factor.
Finally, we need a model for . Following

other TSBNs, we choose a multivariate Gaussian with a mean
that depends linearly on , so that

(6)

This makes the model distribution of a mixture of Gaussians,
with mixing components that depend on the label at the parent
node via . This choice is popular both because
Gaussians are tractable and because mixtures of Gaussians are
very general.

Thus, the set of the parameters of a HIP model includes the
label probabilities at each level, for each label pair

and , and each child position relative to the parent. There
are also the Gaussian mixture component parameters for each
label value at each level. These are the means , correla-
tions with the unsampled parent coefficients, and covari-
ance matrices . All of these parameters can be different at
each level, though they are common within a level, i.e., they are
tied across position, but not scale.

Equations (5) and (6) specify the HIP model. In principle,
sufficiently complex hidden variables could model any distri-
bution, so that these models are completely general. In practice
their generality is limited because there is only so much that can
be learned from a finite data set, and the tree structure has limi-
tations for images, as discussed earlier.

B. Other Image Models

Before focusing on other tree-structured models, note that
there are several models without a tree structure. Examples in-
clude Markov random fields (MRFs) [16], [17], and the max-
imum entropy approach of Zhu et al. [18]. Many algorithms
for texture analysis and synthesis are related to modeling image
probability distributions [19]–[21], since the ability to synthe-
size implies a distribution. All of these models focus on sam-
pling, so it is not straightforward to compute the probability of
a given image. This can make applications like classification dif-
ficult.9 In addition, it is not clear that these algorithms can deal
with images that are not texture, e.g., those that have long-range
variations in local texture.

9Note, however, that De Bonet and Viola [21] can apply their approach to
classification, since they explicitly model the distribution of feature vectors of
an image.

An early example of a tree-structured image model is the
multiscale stochastic process (MSP) [22], [23]. MSPs capture
dependency across scale by conditioning the feature values at
one scale on values at the next lower resolution of the fea-
ture pyramid. Luettgen and Willsky [24], for example, apply a
scale-space auto-regression (AR) model for the problem of tex-
ture discrimination. The continuous variables in the process are
hidden and the observations are sums of these hidden variables,
plus noise. The chief drawback of the MSP as an image distri-
bution is that the resulting joint distribution is Gaussian. This is
clearly not the case in natural images. Buccigrossi and Simon-
celli [25], for example, have shown that the conditional distribu-
tion of neighboring image features can have high kurtosis, i.e.,
the joint distribution of the features are non-Gaussian, so the
marginals are as well (see Fig. 8).

The random cascades of Wainwright et al. [3], [15] account
for non-Gaussian feature distributions along with nontrivial de-
pendencies across image scales. Wainwright et al. construct a
multiscale auto-regressive model of hidden scale factors on a
tree. The typical magnitudes or scales of the wavelet coeffi-
cients are given by these factors, since a coefficient at a node
is the product of the factor and a normally-distributed random
variable. This successfully reproduces a number of marginal
and joint statistics of wavelet coefficients. A difficulty with this
model is the need for approximate methods to fit the model pa-
rameters and evaluate likelihoods.

A number of tree-structured models have been developed in
which the variables with dependencies between parent and child
nodes take values on a finite set. In such models the computa-
tions can be performed exactly. Much of the work in this area
is concerned with image segmentation [6], [26]–[28]. Although
some of these models could be modified to work as distributions
of the observed images, they are all mainly concerned with ob-
taining accurate segmentations. Typically the segmentation la-
bels have the tree-structured dependency from one resolution to
the next, and they condition the observed image values locally.
In some cases, training is accomplished with given segmenta-
tion labels, so that these are observed rather than hidden.

The HIP model can be viewed as an elaboration of the original
HMT model. The common attributes of both models include the
following.

• Local dependencies are captured through models of the
distributions of the local variables in a decomposition of
the image.

• Nonlocal and interscale dependencies are captured with a
set of discrete hidden variables whose dependency graph
is a tree.

• Model parameters are optimized to match the natural
image statistics using strict Maximum Likelihood.

• The models allow both evaluation of the likelihood and
sampling from the distribution.

The HIP model differs from the original HMT in the following
ways.

• In the HIP model, the coefficients of the different sub-
bands at each node are modeled jointly, using a mixture
of multivariate normal distributions. The original HMTs
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model each coefficient separately with a mixture of uni-
variate Gaussians.10

• The HIP model has one tree of hidden variables, whereas
the HMT has a separate tree for each subband type.

• In the HIP model, the number of hidden states in each
level is adjusted separately in an attempt to better fit the
image distribution. The original HMTs have two states
for each of the subband types.

• In the HIP model, each (parent) state conditions the like-
lihood of a (child) state with . We assign dif-
ferent such conditional probabilities to the different chil-
dren depending on their location relative to the parent
(upper-left, lower-right, etc.)

• The mean of each normal distribution depends on the cor-
responding coefficient vector in the unsampled wavelet
coefficient subbands from the next coarser level (the HIP
model resembles an MSP in this way.)

We feel that the use of a single tree of hidden variables and
multivariate Gaussians for the vectors of coefficients at each lo-
cation makes the HIP model conceptually simpler than the orig-
inal HMT image model, at least for images as opposed to 1-D
signals. However, HIP models typically have many more param-
eters, so by this measure, they can be much more complex.

C. Training the HIP Model With an EM Algorithm

We adjust the parameters of our model to match the statistics
of a given set of images by using maximum likelihood (ML) pa-
rameter estimation. Like other tree-structured models, the struc-
ture of the model in (5) and illustrated in Fig. 1 permits the exact
and efficient computation of all marginal probabilities required
for the expectation-maximization (EM) algorithm [30]. Note
that much of the previous work on tree-structured models cited
in Section II-B also use an EM algorithm. It is, of course, espe-
cially similar to the EM algorithm used for the original HMT. A
theoretical discussion of the fitting of some tree-structured like-
lihoods, including complexity-penalized fitting, was given by
Kolaczyk and Nowak [31]. We, therefore, give a basic descrip-
tion and the full equations, without giving a complete derivation.

The algorithm first computes the expectations, over the
hidden variables, of the log-likelihood for a given set of param-
eters and observations (E-step). Then, using these expectations,
the likelihood is maximized with respect to the parameters of
the model (M-step).

(7)

(8)

10However, Fan et al. use a single hidden variable tree in which the hidden
state is a triplet of binary values, one for each subband type [29].

Here, we have summarized all parameters of the model in , and
represents the values of the parameters in the current iteration

step . The sum over is over all images in the training set.
The main challenge for this model lies in computing the ex-

pectations over the unknown labels. In this section only the re-
sulting equations will be given. For the derivation of the proba-
bility propagation in this hierarchical model readers are referred
to [32].

1) Maximization: We start with the M-step by inserting (5)
into (7), as shown in (9) and (10), at the bottom of the page.
Here, represents the marginal probabili-
ties of pairs of labels from neighboring layers at position for
given image data and the current parameter values. The addi-
tive constant is due to the proportionality factors of (5). As-
suming we know the probability for all
parent/child label pairs, , we can search for the optimal
parameters.

At this point we must insert expressions for
and in order to make the set of parameters
explicit and derive expressions for the M-step. As mentioned
earlier we use the same parameters for all positions so that we
obtain homogeneous behavior across the image, tying across po-
sition. However, we allow our model to have different parame-
ters at different pyramid levels — we tie across position but not
scale. We choose to parameterize as

(11)

where the parameters are computed through the param-
eter updates in the M-step of the EM algorithm. This is a means
for keeping properly normalized (which could also
have been done using Lagrange multipliers). The s have an ar-
bitrary scale factor, but the expressions given by the EM algo-
rithm are well-defined in spite of this. Note also that we omit

in this notation as the parameterization is independent of the
position within a layer (it does depend on the position of rela-
tive to the parent node, but we drop this for the sake of brevity).

We have already given the expression for in (6).
The parameter set is now defined as

(12)

where is the number of mixture components in level .
With the choices (11) and (6) the M-step is easily solved. The

maximum of (10) with respect to can be found by setting the
derivatives with respect to the different parameters equal to zero

(9)

(10)
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and solving for the corresponding parameter. For , we
find

(13)

For the remaining update equations, we define the following
weighted average:

(14)

The weights represent the the marginal proba-
bilities of finding label value at position given and the
current parameter values. The update equations are

(15)

(16)

and

(17)

At coarse scales, there may not be enough data to fit full co-
variance matrices. In this case, we can assume diagonal and

. The densities then factor into individual
densities for each component of , and we can replace (15)–(17)
with scalar versions for each component of .

2) Expectation: As is the case for other tree-structured
image models, the expectation step is an elaboration of the
basic forward-backward algorithm that has appeared in several
fields. This has been presented by Baum et al. [33] and in
terms of belief networks by Pearl [34]. We need to compute
the marginal probabilities of pairs of labels from neighboring
layers .

This computation will be essentially the same as propagating
the probabilities of observations of the entire pyramid to a par-
ticular junction of label pairs. Probabilities first propagate up-
ward, and then downward to a particular label pair. During the
propagation, we marginalize over the other labels. We recur-
sively define quantities and , representing the upward and
downward propagating probabilities

(18)

(19)

(20)

(21)

The upward recursion (18) and (19) is initialized at
with and ends at with

. Remember there is no label ,

or one can think of it as a label with a single value. Also we have
assumed that this level has only one location . The image dis-
tribution is then . If we choose level with more
than one location, the total image probability is the product over

of all

(22)

This actually applies whether there is one or more pixel in ,
so we will use this.

The downward recursion (20) and (21) starts with (21) at
with , and ends at

with (20).
With these quantities we can compute the marginal of a

parent-child label pair as

(23)

(24)

where the computations (18)–(24) in the E-step at iteration are
performed with fixed parameters .

Note that several quantities in these computations can take
on extreme values, since we are dealing with densities in a very
high-dimensional space. Therefore, when implementing these
algorithms all of the probability densities and the s and s need
to be represented as logarithms.

D. MDL for Architecture Selection

We now need some criterion for choosing the number of mix-
ture components at each level. We have found that the HIP
model is well-suited for use with information-theoretic criteria
like MDL or Akaike’s information criterion (AIC). In the exper-
iments in Section III we use the MDL cost to select the number
of mixture components at each level. This MDL cost [11], [12],

is given as

(25)

where is the likelihood of the training data under
the model , is the number of parameters in , and is the
number of images in the training set. We use this cost in a search
for an optimal architecture, by which we mean the number of
mixture components at each level in the model.

The search algorithm we use in the experiments of Section III
proceeds as follows. We begin with only one mixture component
at each level. We then duplicate each component along with the
associated parameters, i.e., , , , and , in-
troducing small random perturbations in the parameters of the
duplicate component. We retrain the new, larger model and com-
pare its MDL cost with the previous model. We repeat this, suc-
cessively duplicating labels and retraining, until the MDL cost
increases. The model with the lowest MDL cost is then used in
the applications presented below.

Note that we do not always duplicate (or split) the labels at all
levels. Since each label value has an associated mixture compo-
nent, there must be sufficient pixels in the training set to fit all
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TABLE I
NUMBERS OF HIDDEN LABEL VALUES

of the mixture components at that level. It is possible to use too
many mixture components, in which case the average matrices
used in (15) and (17) become rank deficient for some compo-
nents. Accordingly, we specify a maximum numbers of labels
for each level and stop duplicating labels at a level when the
resulting number would exceed the maximum. Finally, we con-
strain the mixture components at the coarsest level to have di-
agonal covariance matrices, once again because of the lack of
training data at that level.

III. APPLICATIONS AND EXPERIMENTAL RESULTS

To demonstrate its broad applicability, we train a HIP model
for each of three sets of images: EO aerial images of aircraft,
SAR aerial images of vehicles, and mammographic images of
malignant masses. For each of the data sets we apply the model
to classification, synthesis and compression. In all cases, we
compare the HIP model with the original HMT model.

A. Preprocessing and Training Methods

We divide each of the three data sets into training and test
sets of approximately equal size. We use a set of orthogonal
wavelets to decompose the images into features. For the HIP
model, we use orthogonal wavelets with subsampling by three
(Appendix) since these enabled an explicit center pixel to be
defined, which we feel may be an advantage for classification.
For the HMT we use eight-tap Daubechie wavelets, since these
are commonly used in the HMT literature. When applying the
wavelet decompositions we wrap image borders, so that for an
image of width , a pixel with horizontal index can also be
referenced by horizontal index , with an integer. This
effectively treats the images as toroidal, and is needed for com-
pression and synthesis in order to get perfect reconstruction with
non-Haar wavelets. We crop images so that they are square, with
objects approximately centered. We apply the wavelet decom-
position for a maximum number of pyramid levels, resulting in
the coarsest-level feature images consisting of a single pixel. As
discussed earlier, for the HIP models we include in the set
of features at the lowest resolution level, which forces the
model to account for overall image brightness. We also include
the low-pass band (without subsampling) at each level in the set
of parent feature images , allowing the features to depend
on local image brightness.

We train the HIP model using the EM algorithm described
in Section II-C. The number of labels was chosen through the
MDL-based splitting procedure described in Section II-D. The
number of hidden label values in the MDL optimal HIP models
are given in Table I. Label numbers that reached the maximum

Fig. 4. Examples of data used in experiments. Top row: Two image classes
for EO dataset. Left: Aircraft. Right: False positives from template matching,
usually buildings. Middle row: Examples of two image classes for X-ray
mammography dataset. Left: Malignant mass. Right: False positive generated
by the UofC CAD system. Many of the false positives had structure very
similar to the malignant masses. Bottom row: Examples of three image classes
in SAR dataset. Left: BMP2. Center: BTR70. Right: T72.

value we allowed for a given task and level are shown in bold.
The HMT models were trained using software downloaded from
http://www-dsp.rice.edu/software/whmt.shtml.

For the aircraft and mammography data sets, we performed
a jack-knife study of classifier performance. That is, we ran-
domly split the data sets into training and test sets, then trained
and tested models on these sets, and repeated this procedure ten
times with different random splits of the data. The final test per-
formance figures are averages of the test results over jack-knife
splits. The spread of performance gives information on sensi-
tivity to the split of the data set, and reduces the variance in the
performance figures, i.e., accidental high or low values. As an
important but secondary issue, it also tests variations in local
minima of the likelihood during EM training. We did not per-
form a jack-knife study on the SAR data, since it is supplied as
explicit training and test sets.

B. Data Sets

Example images of the different classes in each of the three
datasets are shown in Fig. 4. Note that the difference between
the classes is often very subtle.

1) Aircraft: This dataset was constructed from large EO
overhead imagery of Logan and San Francisco International
Airports. We selected regions of interest (ROIs), each con-
taining an aircraft or a false positive (a negative example), by
applying a simple template matching algorithm. We collect 40
positive and 40 negative ROI images, each cropped to 81 81
pixels for the HIP model and 64 64 pixels for the HMT.



326 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2006

Fig. 5. Negative log-likelihood on validation data versus MDL cost (on training data). Left: Models trained on positive mass images. Middle: Models trained on
positive aircraft images. Right: Models trained on BMP2 images.

2) SAR Images of Vehicles: This dataset was taken from the
“MSTAR Targets” data set.11 We chose separate training and test
sets for each of three vehicle classes: BMP2, BTR70, and T72.
Each vehicle was imaged at fifteen degree intervals in azimuth.
The training and test sets were gathered at different depression
angles (fifteen and seventeen degrees, respectively) introducing
a small systematic variation between the sets. The images were
128 128 pixels, which we cropped to 81 81 pixels for the
HIP model. There were 233 images in the BMP2 and BTR70
training sets, 232 images in the T72 training set, 195 images in
the BMP2 test set, and 196 images in the BTR70 and T72 test
sets.

3) Mammography: This dataset consisted of ROIs selected
from mammograms by a computer-aided diagnosis (CAD)
system developed at the Rossmann Laboratories of the Univer-
sity of Chicago (UofC) [35], [36]. Of these ROIs, 72 contained
malignant masses and 169 were false positives of the CAD
system. The detected objects (apparent lesions) are not neces-
sarily centered in the ROI, since they may lie close to the edge
of the mammogram. The original ROIs were 512 512 pixels,
but to save computer time we sub-sampled them by two in each
direction after applying a standard five-tap binomial blurring
filter. These smaller ROIs were cropped to 243 243 pixels
for the HIP models.

C. MDL Results

Since fitting a HIP model to data means maximizing the like-
lihood, the appropriate measure of generalization performance
is the likelihood of new data. So, to test the effectiveness of the
MDL cost for choosing a model architecture, we compared the
MDL cost on the training data with the likelihood of a valida-
tion set. Scatter plots are shown in Fig. 5. Though the relation-
ship is not always perfectly linear, it is monotonic with very
little scatter. Near the optimum there is some disagreement be-
tween the two measures, but the difference between the criteria
for these models is very small. The MDL cost was an excellent
guide to choosing a model that generalizes well.

D. Classification

For two-class problems, we classified an image by the ratio of
its likelihoods under models trained on each of the classes. The

11Available at http://www.mbvlab.wpafb.af.mil/public/sdms/ datasets/mstar/.

TABLE II
SUMMARY OF CLASSIFICATION PERFORMANCE, HIP VERSUS HMT

standard measure of performance in such a case is , the area
under the receiver operating characteristic (ROC) curve [37].
For the SAR vehicle dataset we have three classes and, there-
fore, cannot use as a performance metric. Instead we clas-
sify examples according to the model that gives the highest like-
lihood, measuring overall performance by the percent correctly
classified.

A summary of classification results is shown in Table II.
For the aircraft and mammography problems, the results are
reported in terms of the area under the ROC curve as measured
on the test sets. The errors given are standard deviations across
the jack-knife results. For all three problems the HIP models
performed significantly better than the HMT models. The poor
performance of the HMT, which is little better than chance, is
surprising given its good performance in other applications. It
may be that the HMT captures important structures in some
image classes but lacks the flexibility to capture subtler features
that distinguish between similar classes.

E. Image Synthesis

Since HIP models are generative, we can sample them to
synthesize new images. These synthesized images can provide
qualitative insight into what features the model is extracting and
representing for both positive and negative ROIs. The sampling
procedure begins at the coarsest resolution, where the hidden la-
bels are randomly sampled from the distribution . The
feature images are then sampled from . The

are used to construct , from which the are con-
structed. We then sample from , and then

from . This is repeated until the
finest resolution is reached and is constructed. Figs. 6 and 7
show examples of synthetic images for all three datasets gener-
ated by the HIP and HMT models (since the HMT models do
not model the mean image intensity, we scaled each individual
HMT synthetic image so that black and white are the minimum
and maximum pixel values within the image; this was also done
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Fig. 6. Synthetic images generated by HIP models. Top row: Models trained
on (left) positive and (right) negative examples of aircraft images. Middle row:
Mammographic ROI images synthesized from (left) positive and (right) negative
models. Bottom row: Synthetic images generated by HIP models trained on
examples of the three SAR vehicle types.

for the HIP mass images, but not for the HIP aircraft or SAR im-
ages). Though the images synthesized using the HIP model do
not capture all the detail indicative of both the image type and
class, they clearly are better matches to the data compared to
those synthesized using the original HMT. For example, the HIP
models synthesize images that capture the statistical dependen-
cies that distinguish the three modalities (EO, X-ray, and SAR),
while those synthesized by the original HMT do not. In addi-
tion the synthesized images from the HIP model demonstrate
subtle differences between positive and negative classes for a
given image modality. For example, the two synthesized images
for the EO imagery show that the model for negative examples
results in a synthesized square blob in the center of the image.
This is presumably because many of the negative examples in
the dataset consisted of aerial views of building. In addition, the
image synthesized for x-ray mammography positive examples
shows a central white blob, indicative that this HIP model repre-
sents centralized mass structure. Such class-dependent structure
is not seen in the images synthesized using the original HMT
models.

1) Conditional Distribution of Features With HIP: To fur-
ther test the ability of the HIP model to learn an accurate rep-
resentation of an image distribution, we measure several distri-
butions of individual features conditioned on the parent
feature for both real and synthesized images. A typ-
ical example (aircraft, level 0, horizontal intermediate band) is

Fig. 7. Synthetic images generated by HMT models. Top row: Models trained
on (left) positive and (right) negative examples of aircraft images. Middle row:
Mammographic ROI images synthesized from (left) positive and (right) negative
models. Bottom row: Synthetic images generated by HMT models trained on
examples of the three SAR vehicle types.

Fig. 8. Distribution of a feature g (x) conditioned on its parent feature
f (x) for (left) real and (right) synthetic images.

shown in Fig. 8. The conditional distributions we examined all
have similar appearance, and in all cases the real and synthetic
distributions agree.

Buccigrossi and Simoncelli [25] have reported such “bow-
tie” shape conditional distributions for a variety of features. We
point out that such conditional distributions are naturally ob-
tained for any mixture of Gaussian distributions with varying
scales and zero means.12 The present HIP model learns such
conditionals, in effect describing the features as nonstationary
Gaussian variables [38].

12In our case, the means are not constrained to be zero, but often have very
small values after training.
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Fig. 9. Size of compressed files versus maximum pixel error for HMT models, MDL optimal HIP models and JPEG 2000. Left: Aircraft images. Center: BMP2
SAR images. Right: Mass images.

F. Compression

A stream of random values can be optimally compressed if
we know the distribution of these values. A model of a source
of images should, therefore, allow us to compress examples of
those images with high efficiency. Here we demonstrate com-
pression with HIP and HMT models using a simple technique.

Given an image and a HIP model, we compress the image as
follows. First, we compute the most likely value of each hidden
label, using (24). These
most likely values are then encoded with arithmetic coders [39],
[40], which require a probability distribution for the symbols
they are to encode. For this, we use the HIP model distributions

.
Given the label value , we then encode the feature

vector using . The latter is used by de-
composing into its components
along the eigenvectors of the covariance matrix . These
components are independent under so they can
be encoded independently. Each component is encoded with
a specified precision by dividing the real line into intervals of
width equal to twice the precision. We then encode the index
of the interval containing the component using an arithmetic
coder. The probability of each interval is provided by the inte-
gral of the univariate Gaussian distribution of the component
implied by . This procedure is computationally
expensive, and is not necessarily optimal even if the HIP model
exactly matches the image distribution, but it serves to demon-
strate the capability. We used the analogous procedure for
compression with the HMT models, except the DC residual is
stored separately, without compression (note that the precision
could change with level in the pyramid, depending on how the
wavelets are normalized).

We compress the images at several values of the precision.
For each of the data sets, which have single-precision floating
point pixels, the range of precisions was chosen by finding the
maximum pixel value in the set of images and choosing preci-
sions between approximately and 0.015 times this max-
imum. Note that this gives rather different ranges for the three
data sets. The images in the aircraft set all have maxima near one
and the maximum over all images is one; the maximum over all
of the BMP2 images is around eight while the maxima of indi-
vidual BMP2 images vary considerably from this; and the mass
images have individual maxima that vary somewhat while the
overall maximum is a little more than one thousand.

Note that we are not including the parameters of either the
HIP or HMT models in the code lengths of the images. This is
because there is one set of parameters used for all of the images.
In the limit of large numbers of images, this extra code length
is negligible. One can imagine new images of a class, say mam-
mographic masses, compressed and decompressed with a spe-
cialized program that includes the model parameters.

To compare with JPEG 2000, we first convert the images to
integer pixels. We divided the images by , where is
the maximum error on the entire data set caused by compression
and decompression with the HIP model at a given precision. The
rounding introduces a maximum error of 0.5 in the scaled pixels,
so that uncompressing the image and multiplying by gives
back the maximum error . We then compressed the scaled
integer images losslessly with JPEG 2000.

The results are shown in Fig. 9 for both HMT, HIP, and for
JPEG 2000. Although our somewhat naïve method of com-
pressing images with HMT and HIP models is not quite as good
as JPEG 2000, it does perform reasonably well. The results
show that the hidden labels do capture useful information,
allowing better compression.

G. Segmentation

Although we do not have segmentation data for any of the
three datasets, we can determine the label probabilities at each
location in an image (at several scales) to obtain a qualitative
estimate of how well the HIP model segments a given image.
Fig. 10 shows probability images for two of the labels from level
one of the MDL optimal HIP model for the BMP2 image shown
in Fig. 4. The left image shows a label that appears to repre-
sent the radar “shadow” behind the vehicle, while the label in
the right image appears to represent some of the edges of the
vehicle (note that it has low probability in the interior and at
other boundaries). Of the other labels that we do not show, many
appear to represent various details of the background clutter
or speckle, and others represent internal details of the vehicle.
Taken with the synthesis results for the SAR images, this re-
sult shows that the hidden labels represent different textures and
the presence of these textures in definite spatial regions. Inter-
estingly, all three vehicle classes share these properties. Since
the HIP model can distinguish between these classes with some
success, it must learn some of the more subtle distinctions be-
tween the spatial regions, or possibly the structure internal to
these regions.
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Fig. 10. Two label probability images for the BMP2 image of Fig. 4.
Brightness indicates posterior probability of the particular label value at each
pixel, given the image and the HIP model.

IV. CONCLUSION

We have presented a TSBN for natural image distributions
that we call the HIP model. It is similar to the HMT of Crouse
et al. [7]. We demonstrated the HIP model’s effectiveness in
several applications, comparing with the HMT.

Although there are several differences between HIP models
and HMTs, we have emphasized the importance of fitting the
HIP model’s complexity to the data, varying the complexity by
choosing the number of values that the model’s hidden vari-
ables can take on. We showed that the MDL criterion provides
a simple and effective means for making these choices.

In our experiments, the MDL-optimal HIP models have thou-
sands of parameters, yet apparently do not overfit the data. This
is due to the nature of the HIP model and many other TSBNs,
which reuse their components (in this case, Gaussian distribu-
tions of wavelet coefficients) many times within a single image.
With models of this sort a single image effectively presents
many examples.

We may well ask what these hidden variables learn to repre-
sent. The hidden variables in the HMT are designed to represent
the range of magnitudes of the wavelet coefficients, in order to
give high-kurtosis marginal distributions. They also capture the
persistence of magnitude across scale. By contrast, the hidden
states in the HIP model are not predefined to have any partic-
ular meaning. Inevitably they model coefficient magnitudes, but
they can also learn to represent other aspects of image structure,
such as spatial groupings of different textures. They do not nec-
essarily result in a physically meaningful segmentation, as they
are driven by image statistics. However, this representation of
image statistics does sometimes correspond to real properties
of the scene, as demonstrated in the previous section. We are
not arguing that one should ignore prior knowledge of relevant
image structure. In fact, elsewhere, [41] we have modified the
HIP model to explicitly represent the range of coefficient mag-
nitudes, as in the HMT or the random cascades of Wainwright
et al. [3], [15]. However, there is always other image structure
that one cannot foresee, so it is worthwhile to include sufficient
flexibility in an image model to learn this extra structure.

Another point we emphasized is the flexibility of generative
image models. After training such a model once on a set of
images we can use it for a variety of applications, as we demon-
strated in the experiments. To enable this the structure of the
model itself must be such that it is easy to apply forward or back-
ward, i.e., or . Though it is clear that other
methods might obtain similar, or even superior, performance on
the individual applications presented, we believe that flexible
tree-structured models like the HIP model provide a practical
unified approach for the modeling and analysis of natural images.

TABLE III
TAP WEIGHTS FOR ELEVEN-TAP ORTHOGONAL WAVELET

FILTERS WITH SUBSAMPLING BY THREE

APPENDIX

The wavelets we used for the HIP model use subsampling by
three. The two-dimensional filters are, as usual, separable, and
are products of 1-D wavelets. For the 1-D filters we solved for
appropriate tap weights subject to the following constraints.

1) One filter is even-symmetric and low-pass (taps sum to
one, zero response at the Nyquist frequency).

2) A second filter is odd-symmetric (therefore, high or band-
pass).

3) The third filter is even-symmetric and high-pass (taps
sum to zero).

4) The resulting transform is orthogonal.
For the even-symmetric filters these constraints automatically
give zero first derivatives of the frequency response at zero fre-
quency and the Nyquist frequency. To solve these constraints
numerically seemed to require eleven taps. In addition, the high-
pass filter had taps equal to those of the low-pass filter, ex-
cept for an alternating sign. Using this to reduce the number
of parameters that characterize the three filters, we found that
the constraints can be solved exactly by symbolic manipulation
software, though the results are somewhat complex. Numerical
values for the tap weights of the low and bandpass filters are
given in Table III. The central tap has index 0.
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