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Abstract

Myoelectric control of a prosthetic hand with more than one degree
of freedom (DoF) is challenging, and clinically available techniques
require a sequential actuation of the DoFs. Simultaneous and pro-
portional control of multiple DoFs is possible with regression-based
approaches allowing for fluent and natural movements. Convention-
ally, the regressor is calibrated in an open-loop with training based
on recorded data and the performance is evaluated subsequently. For
individuals with amputation or congenital limb-deficiency who need
to (re)learn how to generate suitable muscle contractions, this open-
loop process may not be effective. We present a closed-loop real-time
learning scheme in which both the user and the machine learn simulta-
neously to follow a common target. Experiments with ten able-bodied
individuals show that this co-adaptive closed-loop learning strategy
leads to significant performance improvements compared to a conven-
tional open-loop training paradigm. Importantly, co-adaptive learn-
ing allowed two individuals with congenital deficiencies to perform si-
multaneous 2D proportional control at levels comparable to the able-
bodied individuals, despite having to a learn completely new and un-
familiar mapping from muscle activity to movement trajectories. To
our knowledge, this is the first study which investigates man-machine
co-adaptation for regression-based myoelectric control. The proposed
training strategy has the potential to improve myographic prosthetic
control in clinically relevant settings.
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1 Introduction

Electromyography (EMG) can be used to extract control signals for electri-
cally powered hand prostheses from residual muscles. Currently available
prostheses allow for control of a single degree of freedom (DoF) at any given
time. To control two or more DoFs, mode switching between the DoFs, e.g.
by a co-contraction, is needed for sequential actions. Significant progress
has been made with classification-based approaches, which avoid the need
for switching (for reviews see [1, 2, 3]). Since a classifier typically decides
only which movement is activated, the control is limited to binary (on/off)
sequential control at constant speed. Therefore the classification approach
is often combined with a proportional estimator based on EMG amplitude
that allows to modulate force or speed (also referred to as “mutex” [4]). The
limitation of sequential control has been addressed by including additional
classes with combined motion patterns ([5],[6]). However, as the speed of
combined motions can be controlled in a fixed ratio only, there are still lim-
itations. It is e.g. not possible to slowly rotate the hand while opening it
quickly at the same time.

With regression-based techniques one can achieve a more flexible and
fluid control of movement ([7, 8, 9, 10]). The essential difference with respect
to classification is that a regressor does not select a pre-defined movement,
but rather produces proportional outputs for all DoFs independently. Thus
a regressor can be used to control several functions of a prosthesis simulta-
neously without the restrictions of a limited repertoire of movements. This
allows for a smooth, natural and intuitive control which comes closer to the
locomotion of an intact limb. A comparison of different regression techniques
for myoelectric control is presented in [11]. With the appropriate selection
of EMG features, simple linear models perform as well as more complex and
computationally expensive methods such as artificial neuronal networks or
kernel ridge regression. Real-time myoelectric control based on regression
techniques is demonstrated in [12, 13, 14, 15, 16]. To train a regressor, typ-
ically motion or force labels are used, which for uni-lateral amputees can
be measured at the intact limb during bilateral mirrored contractions [7].
Alternatively, one can use visual cues as movement targets ([14, 15, 16]),
thus avoiding the need for cumbersome motion or force measurements that
are not even possible in bilateral amputees.

Most studies that investigate regression-based control used contraction
profiles with combined DoFs in the training protocol [7, 8, 13, 14, 15]. While
combined movements are usually not difficult to execute for able-bodied
individuals, they are challenging to acquire by individuals with amputation
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or congenital limb deficiency as they do not have the intrinsic visual and
proprioceptive feedback of the actual limb.

In this study we initially calibrate a regressor with individual movements
and continue adaptation when performing combined movements allowing the
man-machine interface to co-adapt ([17, 18]) to further improve real-time
performance.

Several studies have investigated adaptation in myoelectric control. Most
of them focused on the classification-based approach [19, 20, 21, 22] and em-
ployed adaptation with the goal to compensate for non-stationarities [23].
In classification, unsupervised adaptation is possible by using the classifier-
output as adaptation target and considering only classifier decisions with
high confidence. This can reduce the impact of slowly changing signal con-
ditions, with the risk, however, that incorrect labels are used for adaptation
leading to catastrophic failure [20]. In contrast, supervised adaptation that
requires explicit user-interaction is more robust [19], though somewhat more
cumbersome to use.

Powell et al. [24] demonstrated the great importance of user-training
for classification-based myoelectric control. They used a strategy based on
alternating open-loop calibration of the classifier and real-time evaluation
using a virtual prosthesis. With the support of confusion matrices and
measures for quantifying inter-class distances and within-class-consistencies,
problematic movements were identified manually and improved by a targeted
user-training.

Pilarski et al. [25] explored the possibility to use actor-critic reinforce-
ment learning for training and adaptation of a myoelectric controller using a
single, binary reward signal. This promising approach requires only minimal
user interaction, but their study was limited to a single subject with only
two contraction patterns. Thus, it remains to be seen whether this strat-
egy can also efficiently be used to control several DoFs with free activation
ratios, as required for independent proportional control.

In the present work we exploit the instantaneous feedback of the close-
loop system, which in combination with a real-time learning algorithm allows
the user and the machine to co-adapt and correct errors on the fly. Due
to the common goal the user and the machine are enabled to adapt to a
consistent and stable control strategy.

This concept of simultaneous (or co-adaptive) learning has been proven
to be effective also in the context of brain-computer-interfaces ([17, 18, 26,
27]). Such co-adaptive systems are influenced by the speed with which both
learners, the human and the machine, are adapting [18]. While learning
speed of the human is not known and may vary between subjects, the adap-
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tation speed of the machine can be controlled via hyper-parameters of the
algorithm. To the best of our knowledge this is the first study that investi-
gates real-time learning for regression-based myoelectric control.

2 Methods

2.1 Signal Processing Chain

2.1.1 Data Acquisition

(a) (b)

Figure 1 – (a) EMG acquisition setup including the textile hose with integrated
dry EMG electrodes mounted on able-bodied subject and custom-made dry EMG
electrode mounted on pre-amplifier. (b) Setup mounted on a subject with congenital
limb deficiency

The experimental setup comprised a 24 bit, 16 channel biosignal ampli-
fier with an extension for dry electrodes (g.tec USBamp + g.tec Sahara),
16 custom-made dry, monopolar steel electrodes with 12 mm diameter that
were integrated into a custom made stretchable textile hose (Fig. 1). The
signals were sampled at 1200 Hz and frequencies above the Nyquist criterion
were removed with internal low pass filters provided by the amplifier. All
further processing and visualization were performed in MATLAB 12a 64 bit
running on a 2.67 Ghz, dual-core personal computer with 8 GB RAM. An
overview on the signal processing chain is given in Fig. 2.

The electrodes were equally distributed on two circles with a distance of
35 mm to each other and the circumference of the textile hose adapted to the
forearm of the subject. For the able-bodied subjects the hose was placed on
the dominant forearms and for the subjects with congenital limb deficiency
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Figure 2 – Schematic overview of the signal processing chain. Pre-processing and
feature extraction blocks are omitted in the batch training path for better readability.

on the affected side. For all subjects the electrodes were located approxi-
mately above the region with the largest diameter. Ground and reference
electrodes were placed on bony sections of the wrist and the Olecranon with
little EMG activity. We recruited ten able-bodied subjects (five females,
five males, age 21-53) and two individuals with congenital limb-deficiency
(congenital 1: female, age 36, residual limb length approximately 1/3 of the
normal forearm; congenital 2: male, age 41, residual limb until wrist-level)
to participate in this study. All experiments were in accordance with the
declaration of Helsinki and were approved by the local ethics committee.

2.1.2 Pre-processing and Feature Extraction

The data were acquired and processed in blocks of 40 ms, corresponding
to the update rate of the system (fupdate = 25 Hz) including the visual
feedback. Sample-wise common-mean subtraction was performed to remove
correlated noise and distortion that may be introduced by activity at the
reference electrode and 50 Hz comb filters were applied to remove power-
line interferences, including its harmonics. To reduce movement artifacts
and maximize the signal-to-noise-ratio, the data were further filtered by
4th order Butterworth band-pass filters with a pass-band between 30 and
300 Hz. After pre-processing, the data were transferred into a queue buffer
so that the last 12 s of data were available for feature extraction and real-
time visualization.

We have shown in an offline-study that the log-variance of the band-
pass filtered EMG is approximately linearly related to the joint angle and
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thus allows for using computationally efficient linear regression techniques
[11]. Therefore this feature was extracted for each channel, resulting in a
16-dimensional feature-vector x(t). The feature extraction was based on
blocks of 200 ms with an increment of 40 ms, equivalent to the update rate
of the system. This window duration is within the acceptable time delay
between user command and prosthesis reaction [28],[29].

2.1.3 Regression and Post Processing

We applied an instantaneous, linear regression model where estimated out-
puts ŷ(t) (the position of a cursor on at 2D display) are obtained for each
time instance t as a linear combination of the EMG features x(t):

ŷ(t) = W>x(t) (1)

Each dimension in ŷ(t) corresponds to one DoF and x(t) is extended
by the constant 1 to incorporate a bias compensation in W. Thus, in our
case the weight matrix W which characterizes the regression model is of size
< 17×2 >. The learning algorithm used to obtain W is described in section
2.2.

Since the instantaneous regression output ŷ(t) contains undesired high-
frequency components caused by the stochastic nature of the EMG signal,
an exponential moving-average filter (EMA) was applied to obtain a smooth
controller output ŷ′(t):

ŷ′(t) = γŷ′(t− 1) + (1− γ)ŷ(t). (2)

where the filter-constant γ controls the basic trade-off between smooth-
ness of the movement trajectory and latency of the control. We set it to
γ = 24/25, which subjectively provided a good compromise during execu-
tion. With these choices for temporal filtering, size of analysis window, and
output smoothing the total delay of the system was less than 300 ms and
subjects generally perceived an immediate system response.

2.2 Recursive Least Squares

Training a linear regression model with pre-recorded data can be done with
a batch algorithm using the least mean-squares solution [30]:
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W = (XX>)−1XY> (3)

In our supervised adaptation paradigm described below, the regression
model is continuously updated every 40 ms during training. In cases like
this, when new training samples are to be integrated continuously, on-line
learning algorithms are more efficient than repeated batch training with in-
creasing training sets. This saves memory, as there is no need to store the
entire feature-set and is typically computationally less expensive [31]. We
chose the exponential Recursive Least Squares (RLS) algorithm for this pur-
pose [32]. This is a a powerful and stable extension of the batch algorithm.
The RLS algorithm minimizes the following cost function:

E(t) =

t∑
i=0

λt−ie2(i) (4)

where e2(i) is the squared error and 0 < λ ≤ 1 an exponential weighting
constant which determines the influence of new data-samples and thus the
speed and stability of adaptation. Based on an adaptive Wiener filter with
this cost function the following set of update equations can be derived:

α(t) = y(t)> − x(t)>W(t− 1) (5)

g(t) = P(t− 1)x(t)
(
λ+ x(t)>P(t− 1)x(t)

)−1
(6)

P(t) = λ−1P(t− 1)− g(t)x(t)>λ−1P(t− 1) (7)

W(t) = W(t− 1) + α(t)g(t) (8)

α(t) is the error with which the model from the previous update step
would predict a new incoming data-sample at time instance t. P(t) is the
inverse of the exponentially weighted sample covariance matrix and g(t) is
the gain vector. Small values for λ cause a relatively fast adaptation and
larger values (close to one) cause slower adaptation. For λ = 1 the algorithm
becomes the growing window RLS, which gives equal weight to all samples
and results in exactly the same solution as the batch algorithm with all
collected data points. A detailed introduction on RLS is found in [32].

We initialize the model with the conventional batch algorithm (W(0)
as Eq. (3) and P(0) = (XX>)−1) applied to the calibration data. This
approach can be seen as a two-stage procedure: calibration with growing
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window RLS followed by real time-adaptation with exponentially weighted
RLS. We chose this scheme to give equal weight to all calibration samples and
to start with the same condition for all learning constants to be investigated.
In the experimental section we will investigate the influence of the adaptation
speed, determined by the learning constant λ.

2.3 Experimental Paradigm
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Figure 3 – Experimental paradigm. (a) Display presented to the subject during
calibration phase without feedback. The larger green “target-cursor” moves along
pre-defined trajectories – the subject is asked to follow this cursor with wrist de-
flections. The upcoming target location is indicated with three small green circles
to minimize delays between the instruction and user-reaction. (b) Display presented
to the subject during performance evaluation and adaptation phases. The subject
controls the red cross with muscle contractions and tries to hit the green circle, i.e.
remain within the stationary target circle for one second without leaving it.

This study involved simultaneous movements of the two wrist DoFs flex-
ion/extension and radial/ulnar deviation. The relative wrist angles were
visualized on a user display by a two dimensional coordinate system in
which the horizontal axis corresponds to flexion/extension and the verti-
cal axis to radial/ulnar deviation (Fig. 3). The origin corresponds to the
rest position of the wrist joint and the points on the unit circle to maximal
wrist-inclinations. This control scheme is referred to as position-control and
provides a direct view on the capabilities of the regressor [14].
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2.3.1 Calibration Runs

In our previous offline-study [11] we found that even when trained with sin-
gle DoF movements only, combined movements of the two DoFs investigated
here can be estimated with relatively high accuracy by a linear regressor. For
people with limb deficiency who are potential users of the proposed method
it is very difficult to perform accurate combined movements without the in-
trinsic feedback of the limb. Including combined motions into open-loop cal-
ibration has almost no influence for able bodied subjects ([33]), while it can
cause even negative effects in individuals with upper-limb deficiency who are
often not able to reliably generate combined contractions with well-defined
activation ratios. Therefore it was decided to compose the calibration runs
for this study of single DoF activations only.

The subjects were instructed to follow visual targets that moved along
predefined trajectories with their wrists angles and the subjects with con-
genital limb deficiency were asked to perform equivalent contractions. The
trajectories were defined as follows: three seconds movement from rest po-
sition to maximal inclination, two seconds remaining in this position and
three seconds returning to rest position. In each calibration-run this was
repeated once for all four directions (Fig. 3 (a)). Interleaved with the tra-
jectories also phases of “no-motion”-data were recorded (8 s per run) which
were also included in the open-loop calibration.

2.3.2 Evaluation Runs

For closed-loop real-time evaluation, the current wrist position estimated
from the EMG was visualized in real-time on a user screen by a red cursor
(size 0.2 units). Circles with a radius of 0.15 units appeared within the
coordinate system and the subject was asked to hit the stationary targets
by moving the red cursor into the circle and remaining there for one sec-
ond without leaving it. To allow for a fair and systematic comparison, the
circle-positions were taken in randomized order from a pre-defined list that
consisted of 8 equally spaced circles with a center-to-origin distance of 0.5
units and 16 circles at 0.85 units. The circle-positions are shown in Fig. 6.
In order to approach each target from the rest-position and thus avoid pos-
sible influences of the randomized order (e.g. when two circles appear close
to each other), before each regular target, an additional “zero-target” was
placed at the origin of the coordinate system. Thus one evaluation run con-
sisted of 24 regular targets and 24 zero-targets. The latter were not counted
for the performance-evaluation. If a circle was not hit within ten seconds, a
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time-out took effect and the run continued with the next target.
The metrics used to evaluate the performance (completion rate, comple-

tion time, overshoot ratio and path efficiency) are explained in table 1. We
included all hit and missed targets in the performance metrics in order to
avoid the potential bias caused by easier targets closer to the origin that
were hit more frequently.

Table 1 – Performance Metrics

Metric Description

Completion Rate Ratio of successfully hit targets and
total number of targets

Completion Time Average time to hit a target, for missed
targets the time-out is counted (10 s)

Overshoot Ratio Number of times a target was left before 1 s dwell
time, normalized by the total number of targets

Path Efficiency Average ratio of shortest path to reach
the target and actually traveled path-length

2.3.3 Adaptation Runs

For closed-loop real-time adaptation, the same paradigm as in the evaluation
runs was applied. In order to adapt the model only for problematic regions,
the adaptation started when a circle was not hit within the first five seconds
after its appearance, and stopped when the target was hit or the ten second
time-out occurred. The subjects were informed by an auditory signal about
the start of the adaptation phase and were instructed to keep trying to
hit the target. During the adaptation-phase the current feature vector was
used to adapt the regression model (every 40ms) with the current target
as reference. This evidently improved the regression model for the region
of the current target. Since the target position is known to the algorithm
during adaptation, a fair evaluation of the performance during these runs
is not possible. Thus, data from the adaptation-phase was excluded for the
performance evaluation.

2.3.4 Study Design

The goal of this study was to explore co-adaptive real-time learning as a tool
to train regression algorithms for myoelectric control and to investigate the
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influence of the adaptation speed within this two-learners problem consist-
ing of human and machine. To compare the results of co-adaptive learning
with those of conventional open-loop training and determine to which ex-
tend improvements may be caused by user adaptation alone, four control
conditions were included, which will be explained below in more detail. A
chronological overview of the experiment is provided in table 2. Between
the runs the subjects were allowed to take breaks of arbitrary duration in
which beverages and sweets were offered. An entire session lasted around 1
1/2 to 2 hours. None of the subjects reported muscular or mental fatigue.

In the beginning of the session the signal quality was checked by visual
inspection of the filtered EMG during rest and contraction. The experi-
menter explained the paradigm to the subject and demonstrated the wrist
movements, which were copied by the subject for training purpose. For
the subjects with congenital limb-deficiency a real-time visualization of the
EMG-amplitudes was used to verify that they generated different patterns
for the four non-combined movements of the two DoFs used in this study.
After one demonstration run to familiarize the subject with the paradigm,
four calibration runs were recorded and used to generate a regression model
using the conventional (open-loop) least-squares batch algorithm (Eq. 3).
This model was tested with one evaluation run as a baseline condition de-
noted by “Init 1”.

In the following phase, co-adaptive real-time learning was investigated.
For each adaptation speed, two runs were performed: One adaptation run
and one evaluation run. For each adaptation run the RLS algorithm was
initialized as described in section 2.2 based on the first three calibration
runs. This was done to utilize approximately the same amount of data for
obtaining the adapted model as in the baseline condition. After completing
each adaptation run, the adapted model was tested in one evaluation run.
This was repeated for each learning speed λ. The values for λ to be tested
(1.0, 0.995, 0.99, 0.98, 0.96) were selected empirically. To avoid confusing
subjects, the values of lambda were gradually changed in increasing ordered
for half of the subjects and in descending order for the other half.

To evaluate learning effects of the user, the same model as for the baseline
condition was tested a second time after the user had gained more experience
with the paradigm and the control (“Init 2”). Since the primary shortcoming
of the baseline condition was a limited range of motion, we included a naive
correction condition (”upscale”) where the output was simply scaled by a
user-specific factor that extended reach to the entire output space. The
scaling factor was determined by analyzing the cursor-traces of runs 5 and
16 that were performed with the initial regression model. For the direction
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with the shortest reach, the inverse of the maximal distance to the origin
was used as factor, and in cases of inconsistency between the two runs the
smaller factor was used. The factors applied in this study were in average
2.34± 0.38 (range: 1.82 to 2.94).

For a final control condition, four additional calibration runs were recorded
in the end of the session and used to train a regression model as in the base-
line condition. This was done in order to test if re-calibration after obtaining
experience with the control could improve the performance in a final evalu-
ation run (“re-calibration”).

Table 2 – Chronological overview of the runs performed in this study

Run Type Init with run Description

1 - 4 Cal Calibration
5 Eval 1 - 4 Init 1
6,8,10,12,14 Adapt 1 - 3 Adaptation with different λ
7,9,11,13,15 Eval Evaluation of adapted models
16 Eval 1 - 4 Init 2
17 Eval 1 - 4 Test upscaling
18 - 21 Cal Re-calibration
22 Eval 18 - 21 Test Re-calibration

3 Results

We conducted experiments with ten able-bodied subjects and two individu-
als with congenital limb deficiency according to the experimental paradigm
described in section 2.3. The closed-loop real-time performance was ana-
lyzed according to the quantitative metrics introduced in table 1 and quali-
tatively by direct inspection of the cursor trace and the location of hit and
missed targets.

3.1 Quantitative Results

Real-time performance for all subjects was evaluated after co-adaptive learn-
ing with five different adaptation speeds and in four control conditions (Fig. 4
a-d). To test statistical differences between the conditions for the ten able-
bodied subjects, one-way repeated-measure(RM)-ANOVA was conducted.
All statistical analyses were done in SPSS and the significance threshold
was set to 0.05. Since RM-ANOVA assumes equal variances for all condi-
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Figure 4 – Real-time evaluation results for the four control conditions and after
adaptation with different λ. Blue circles and error bars show means and standard
deviations across all able bodied subjects, the red squares and green diamonds indi-
cate the performances of the two congenital subjects. The blue triangles show the
mean performances for able-bodied subjects for targets with lower and higher dis-
tance to the origin separately. Panel (a)-(d) show completion rate, completion time,
overshoot ratio and path efficiency. The plots in panel (e) show post-hoc pair-wise
comparisons in which black fields indicate statistical significant differences between
the corresponding conditions (p < 0.05). The best performance across all metrics is
obtained after adaptation with λ = 0.995. Completion rate and time show similar
results for the upscaled condition but the poor overshoot ratio and path efficiency
obtained with the upscaled model indicate a significant drop in stability. The sub-
jects with congenital limb deficiency show the same trends as able-bodied subjects
and reach a similar performance after co-adaptive real-time learning.
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tions, Mauchly’s Test of Sphericity was conducted. A significant difference
between the variances of each condition was found for path efficiency, there-
fore Greenhouse-Geisser correction [34] was done for this metric. For all
four performance metrics, significant differences between conditions were
found (completion rate: F (8, 72) = 24.378, p < 0.001; completion time:
F (8, 72) = 23.018, p < 0.001; overshoot-ratio: F (8, 72) = 13.625, p < 0.001,
path efficiency: F (2.66, 23.98) = 4.664, p = 0.013). A post-hoc paired t-
test with Bonferroni correction for multiple comparisons was performed to
identify the conditions with significant differences. Results of the statistical
evaluation are provided in Fig. 4 (e).

Across the tests based on real-time learning, λ = 0.995 showed the best
results with the highest completion rate, lowest completion time and high-
est path efficiency. The completion rate and completion time significantly
improved compared to the baseline-condition “Init 1” while the overshoot
ratio and path efficiency showed no significant difference.

Control condition “Init 2”, which uses the same regression model as in
condition “Init 1” showed a slight improvement in all metrics, but none
of the differences between “Init 1” and “Init 2” were significant, suggest-
ing limited benefit of user-adaptation alone. A similar trend was observed
for the re-calibration condition. Here only completion time showed signif-
icant improvements. Despite performance improvements for “Init 2” and
re-calibration, the performance of both models was still significantly lower
than the closed-loop co-adaptive model (at λ = 0.995) in terms of comple-
tion rate and completion time, showing that co-adaptive real-time learning
can further increase the overall performance of myoelectric control.

The upscaled model showed statistical significant improvements in the
completion rate and completion time, similar to co-adaptive learning with
suitable λ. However, the control became rather unstable. This is seen
in the overshoot ratio which worsened significantly and showed the lowest
performance among all conditions. The difference to the best co-adaptation
condition is marginally significant (p = 0.052), and statistically significant
relative to the other conditions. The upscaled condition showed also the
lowest path efficiency which was significantly worse than for “init 2” and
the model obtained from co-adaptive learning with suitable λ.

The individual results for targets with smaller and larger distance to the
origin show that co-adaptive learning leads to the strongest improvements
for the outer targets compared to the baseline conditions. However, even
if the effects for the inner targets are weaker, for both types of targets the
same trends are visible.

The two subjects with congenital limb deficiency showed similar trends
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as the able-bodied subjects, except that “congenital 2” performed relatively
poor in all control conditions. Especially the condition “upscaled” showed
low performance in all metrics and the very high overshoot ratio and very low
path efficiency indicate that the control was rather unstable. Remarkably,
with co-adaptive learning both subjects with congenital limb deficiency per-
formed as good as the able-bodied subjects. Moreover, the optimal learning
constant was the same as for the able-bodied subjects (λ = 0.995).

3.2 Qualitative Results

Figure 6 shows cursor-traces and target hit maps for two representative
able-bodied subjects and the two subjects with congenital limb deficiency.
For the initial condition based on open-loop training (“I1”) the range of
motion indicated by the black traces is often limited such that targets located
in the outer regions could not be reached. The accessible range remained
almost unchanged in the second test with the same regression model after the
subject gained more experience with the control (“I2”). Repeated open-loop
training with new calibration runs recorded at the end of the session (“RE”)
improved range in some cases, but did not fully correct this deficiency.

In the evaluation runs after co-adaptive learning with λ = 0.995, the
range improved for all subjects so that most targets could be hit or at least
shortly entered. For a lower adaptation speed (λ = 1) the range increased
only slightly. The fastest adaptation speed (λ = 0.96) led to a poor and
often very asymmetrical range. This indicates that the regressor overfitted
to the most recent adaptation targets and “forgot” the relation between
EMG features and output-space for other regions. This was confirmed when
inspecting the specific (random) order in which targets were presented.

Upscaling of the regression output (“UP”) causes by definition an ex-
tended range of motion so that most targets could be reached. However, the
controllability was much worse than in the tests after co-adaptive learning
with suitable adaptation speed. While the straight traces after co-adaptive
learning indicate that the subjects could approach the targets directly and
with high confidence, the traces in the upscaled condition reveal that there
were strong overshoots and that the subjects often had to correct the direc-
tion. In some cases (such as able-bodied 1 and congenital 2) the controlla-
bility was so poor that many targets that were clearly within the range of
motion could be entered but not hit because the control was too unstable
for reaching the 1 s dwell time before the 10 s time-out. The qualitative
results for the individuals with congenital limb deficiency are comparable in
all aspects to those of able-bodied individuals.
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A direct investigation of the coefficients W during the adaptation process
for the first DoF (flexion/extension) and the two subjects with congenital
limb-deficiency is provided in figure 5. With increasing adaptation speed
(smaller λ) the coefficients w1 are changing faster and start oscillating for
too fast adaptation. For the best adaptation speed (λ = 0.995), the absolute
values of some coefficients increased during the overall adaptation process
while others decreased. Also the norm ‖w1‖ did not necessarily increase as
the case of “congenital 2” shows. This demonstrates that the improvements
in the regression model achieved during adaptation do not simply correspond
to an amplification of the output, but more specific adaptations occur.
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Figure 5 – Adaptation of w1 at different adaptation speeds for the two subjects
with congenital limb deficiency. Each curve represents the development of one entry
of w1 during the adaptation process, the bold black line the norm of w1 and vertical
gray lines separate different adaptation targets. Similar results (not shown) were
obtained for w2 and the able-bodied subjects.
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Figure 6 – Qualitative visualization of control performance for two able-bodied sub-
jects with relatively low (able-bodied 1) and high (able-bodied 2) initial performance
and for the two subjects with congenital limb deficiency. The black curves indicate
the traces of the control cursor, green circles represent successfully hit targets, red cir-
cles missed targets and orange circles targets that were entered but not hit because
of insufficient dwell time. For the adaptation runs green circles represent targets
that were hit before adaptation started, violet circles targets that were hit during the
adaptation phase and red circles targets that were missed despite adaptation. Above
the dashed line the four control conditions are presented: Initial model tested in the
beginning (I1) and towards the end of the session (I2), upscaled output (UP) and
re-calibrated (RE). Below, the adaptation runs with different learning constants λ
are shown (Adapt) and next to it, the test runs for the adapted models (Test). In
the initial condition (I1 ) some parts of the outer regions were often not accessible
and remained nearly unchanged in the 2nd test (I2). Re-calibration could only partly
compensate for this limitation. Upscaling of the output led by definition to an ex-
tended range but made the control relatively unstable which led to many overshoots
and made fine-control difficult. After adaptation with λ = 0.995, the range became
more uniform and covered almost the entire range, while stability of the control was
maintained.
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4 Discussion

In this study we have shown that co-adaptive learning can significantly
improve regression-based myoelectric control compared to open-loop cal-
ibration. We demonstrated that the benefits are not simply a result of
user-adaptation or improvement in the training data as practice progresses.
We conclude therefore that performance gains result from the interaction
between the two concurrent learners. We also showed that simple correc-
tive strategies based on off-line learning are inadequate. Importantly, co-
adaptive learning allowed individuals with congenital deficiencies to perform
simultaneous 2D proportional control at levels comparable to able-bodied in-
dividuals, despite having to learn a completely new and unfamiliar mapping
from muscle activity to movement trajectories.

By providing a common target, co-adaptive learning permits the two
learners — human and machine — to stably converge to a synergistic con-
trol strategy for independent proportional control of two DoFs. The conven-
tional approach to myographic control leverages user-learning and machine-
learning by interleaving phases of open-loop calibration and real-time user
adaptation [24]. This can be relatively slow as the machine learns only once
in each iteration, and the user does not receive feedback on improvements of
the model until the next evaluation period. Thus, several iterations of this
time-consuming process may be required until convergence is reached [24].
In our co-adaptive learning approach, both the algorithm and the user learn
simultaneously in an interactive way. Due to the real-time feedback which
is now provided during adaptation, the user is encouraged to continuously
improve contraction patterns, which are immediately incorporated into the
model.

A crucial trade-off in co-adaptive learning is that between stability and
adaptation speed [18]. In the present system this trade-off is regulated by
the learning constant of the recursive least-squares algorithm. We found
that all subjects tested achieved best performance with a similar learning
constant, suggesting that this parameter should be applicable to most indi-
viduals. Note that due to the two-stage procedure described in section 2.2,
the number of calibration samples would influence the optimal value for λ.
However, this can easily be compensated by normalizing the initialization
of P by the ratio of calibration samples.

The case of “congenital 2” is of particular interest because this subject
had poor performance in all control conditions. Those are the conditions
that rely exclusively on open-loop calibration. Yet, closed-loop co-adaptive
learning permitted this subject to identify muscle contraction pattern with
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a performance that is on par with able-bodied individuals. This qualitative
jump was not possible with user-learning because effective control requires
not only that the user generates appropriate contractions, but for the ma-
chine to translate these into the correct 2D coordinates. Without the cor-
rect set of contractions the machine cannot learn, and without the correct
mapping the user will not discover the correct muscle pattern. This chicken-
and-egg problem is less severe for able-bodied individuals because they can
rely on a known muscle contractions to independently control two DoFs.
But regardless of the initial conditions, the co-adaptive learning allows the
individual and machine to more readily identify a synergistic strategy within
the allowed time.

The present work emphasized clinical feasibility. First, we selected a dry
electrode system. While gel electrodes provide better signal quality, only
dry electrodes are suitable for an application in prosthetics. Second, we
used very efficient linear processing techniques that provide minimal latency
and can be readily implemented in low-power and low-cost digital hardware
required for clinical application [3]. Third, no measurements of kinematics
or forces were needed and instead only visual cues were used for the initial
calibration and adaptation. Aside from reducing the costs, this allows for
applying the methods to a wide range of users, including bilateral amputees
who stand to benefit the most from advanced hand prostheses. In this study
we used 16 EMG-channels, as this allows for a non-targeted placement of
the electrodes. A reduction of the number of channels is possible and can
be done very efficiently with channel-selection techniques [35].

We have shown in previous offline-studies, which included motion-tracking
based data labels that a linear regressor, calibrated with the individual DoFs
flexion/extension and radial/ulnar deviation is able to estimate even com-
bined movements with relatively high accuracy ([11, 33]). In this real-time
study, combined movements could also be estimated after open-loop train-
ing the individual DoFs based on visual cues, but often some regions of the
2D output space were out of reach. Initial tests that involved also combined
motions in open-loop training could not solve this issue. As it is so far not
fully understood, how exactly the users transfer visual cues into kinemat-
ics and forces, inaccuracies in this transformation may be one of the factors
that caused problems in open-loop calibration. This is particularly problem-
atic in subjects with upper limb deficiency, who due to the missing feedback
have difficulties in generating precise contraction patterns and where neither
kinematics nor forces can be measured on the affected side.

Upscaling the output did not solve the problems of the open-loop trained
model, as it led to a loss in fine-control. Even if this particular issue may be
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partly reduced by heuristic compensation approaches, our co-adaptive learn-
ing approach provides a universal solution for a wider range of calibration
problems. The essential advantage of the presented adaptation techniques is
that the regression model is gradually improved while at the same time they
leverage the human ability to learn and adapt to this changing machine con-
trol. This allows the user to more readily discover new contraction patterns
that permit better simultaneous control for multiple degrees of freedom.

Future work will include co-adaptive learning for regression-based con-
trol of more than two DoFs. As the amount of possible combined move-
ments grows exponentially with the number of DoFs, the strategy presented
here is expected to be particularly useful. Our paradigm represents an effi-
cient way to obtain new training examples only for regions that cannot be
reached by a simple superposition of single DoF contractions. Initial tests
with non-linear techniques such as kernel ridge regression did not exhibit
significant improvements for the the current DoFs, but may be required for
other DoFs (e.g. supination/pronation). Integrating them into our frame-
work is straight-forward as efficient on-line learning algorithms are available
also for non-linear regression techniques [16, 36]. Optimized spatial filters
[37, 38], which enhance desired signal-properties in the raw-signal domain
may also be beneficial when aiming to increase the number of DoFs.
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