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Abstract
The presence of asymmetry in the misclassification costs or class prevalences is a common occur-
rence in the pattern classification domain. While much interest has been devoted to the study of
cost-sensitive learningtechniques, the relationship between cost-sensitive learning and the specifi-
cation of the model set in a parametric estimation frameworkremains somewhat unclear. To that
end, we differentiate between the case of the model including the true posterior, and that in which
the model is misspecified. In the former case, it is shown thatthresholding the maximum likelihood
(ML) estimate is an asymptotically optimal solution to the risk minimization problem. On the other
hand, under model misspecification, it is demonstrated thatthresholded ML is suboptimal and that
the risk-minimizing solution varies with the misclassification cost ratio. Moreover, we analytically
show that the negative weighted log likelihood (Elkan, 2001) is a tight, convex upper bound of
the empirical loss. Coupled with empirical results on several real-world data sets, we argue that
weighted ML is the preferred cost-sensitive technique.
Keywords: empirical risk minimization, loss function, cost-sensitive learning, imbalanced data
sets

1. Introduction

Pattern classifiers make decisions; when those decisions are wrong, a loss is incurred. Thus, the
ultimate goal of a classifier is to minimize the loss. When put into probabilistic terms, themathe-
matical expectation of the loss is called therisk, and is related to the classifier’s error rates. In the
case of a binary classification this can be written as (Duda et al., 2001):

risk= p(+1)c(+1)p(error|+1)+ p(−1)c(−1)p(error|−1) , (1)

wherec(+1) andc(−1) denote the costs of a false negative and false positive, respectively,p(+1)
and p(−1) are the prior probabilities for classesy = +1 andy = −1, p(error|+1) is the false
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negative rate, andp(error|−1) is the false positive rate. Notice that the false positive and negative
rates are the only terms which depend on the classifier parameters, whereas the misclassification
costs and class priors are typically constants of the classification problem (later, we consider the
case of example-dependent costs). The class priors are coupled with the costs of misclassification
in the expression for expected loss. Thus, the risk minimization problem is uniquely defined by
the ratio p(+1)c(+1)

p(−1)c(−1) ; that is, even though the priors and costs may vary, as long as this ratio stays
constant, the optimization problem is unchanged.

The termcost-sensitive learning(Elkan, 2001) has been attached to classification environments
in which c(+1) 6= c(−1). On the other hand,classification with imbalanced data sets(Chawla and
Japkowicz, 2004) refers to the case wherep(+1) 6= p(−1). The presence of at least one of these
asymmetries has been referred to by some as the “nonstandard” case (Linet al., 2002), even though
the situation is rather common in practice. In any case, these two problems may beunified simply
by stating that the goal of the classification is to minimize the risk, as opposed to theconventional
error rate:

error rate= p(+1) p(error|+1)+ p(−1) p(error|−1) .

A classifier that is designed to minimize the error rate will generally yield a high expected loss
when applied to the casec(+1) 6= c(−1), as the error-minimizing classifier will under-emphasize
the more costly class. The problem may be exacerbated if the class prevalences are also skewed,
and in the extreme case, the algorithm yields a trivial classifier which alwaysselects the common
class.

Minimizing risk is synonymous with optimally trading off the false negative and false positive
rates. The trade-off between the false positive rate and false negativerate is precisely depicted by
receiver operating characteristic (ROC) curves (Provost and Fawcett, 1997; Fawcett, 2004; Egan,
1975). Thus, ROC curves are well-suited to evaluating the expected loss of a classifier across the
range of misclassification costs. However, “reading off” the expected loss from an ROC graph is not
straightforward, and Drummond and Holte (2000) proposed cost curves as an explicit visualization
of a classifier’s risk for varying misclassification costs and class priors.Since the ratiop(+1)c(+1)

p(−1)c(−1) is
unbounded, the curves instead show the risk as a function of theprobability cost function(pcf):

pcf=
p(+1)c(+1)

p(+1)c(+1)+ p(−1)c(−1)
.

Cost curves facilitate the quantification of the reduction in loss offered by acost-sensitive learning
algorithm.

Several methodologies have been developed in the effort to design risk-minimizing classifiers.
The simplest approach is to modify the threshold of an existing, cost-insensitive classifier. If the
classifier is based on the log of the ratio of true class posterior probabilities,the threshold should
be modified by a value equal to the log of the ratio of misclassification costs (Duda et al., 2001).
In practice, the true class-conditional probabilities are unknown. Nevertheless, shifting the thresh-
old by the corresponding amount has become a common heuristic (Elkan, 2001; Lin et al., 2002).
Elkan (2001) proposes handling asymmetric misclassification costs by retraining the classifier on
a training set in which the proportion of positive and negative examples is matched to the ratio of
misclassification costs. Alternatively, if an algorithm may apply weights to the training examples,
the negative examples should be weighted by a value corresponding to the asymmetry in misclas-
sification costs. Maloof (2003) points out that although the problems of imbalanced data sets and
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varying misclassification costs are separate problems, they may be tackled in very similar ways. He
shows empirically that oversampling the less prevalent class (or undersampling the more prevalent
class) is a procedure which yields results virtually identical to adjusting the decision threshold.

Domingos (1999) proposes a technique to relabel the training data in such away that the rela-
beled data set may be trained using a standard (cost-insensitive) techniqueto yield a cost-sensitive
classifier. The posteriors for thelabeledexamples are estimated via bagging and then used in con-
junction with the Bayesian minimum risk criterion to assign new labels to the supervised data.
Margineantu (2000) analyzes the approach of Domingos (1999) and suggests ways of improving
the class probability estimates of the training data. Dudik and Phillips (2009) address the class im-
balance problem by proposing a method which attempts to minimize loss assuming the worst-case
class proportions. Masnadi-Shirazi and Vasconcelos (2010) describe a cost-sensitive version of the
popular support vector machine.

Some work has been devoted to the case of example-dependent costs (Zadrozny and Elkan,
2001; Zadrozny et al., 2003). Moreover, some authors have advocated for maximizing benefits
rather than minimizing costs (Elkan, 2001).

In Guerrero-Curieses et al. (2004), the authors examine loss functions which are minimized by
the true class posterior probabilities; moreover, it is pointed out that the corresponding optimization
algorithms should focus on training points near the decision boundary.

It is also important to point out that risk minimization is a diverse problem spanning multiple
research communities; in particular, significant contributions to the problem have been made in the
econometrics literature. To that end, Elliott and Lieli (2007) examine a problem analogous to cost-
sensitive learning, namely the determination of a profit maximizing decision scheme by a lender.
It is noted therein that to construct the minimum risk decision, the model density need not match
the true density; rather, it is only required that the classifier output from the model density falls on
the same side of the threshold as the classifier output using the true density. Moreover, the authors
use a new loss function, namely an affine transformation of the expected utility(risk), and show an
empirical advantage over traditional methods.

While a plethora of cost-sensitive methods has been investigated, it remains unclear under what
conditions shifting the threshold of an existing cost-insensitive classifier is an appropriate solution.
The distinction between the case of the model family including the true posterior,versus that of
“misspecification” (the model does not contain the truth), has large implicationson the resulting
cost-sensitive learning process.

In the former case, shifting the threshold of the maximum likelihood (ML) solutionis an asymp-
totically optimal solution to the risk minimization problem, and in the following we provide aproof
of this important point. This means that when employing an expressive family which contains the
true posterior, the cost-sensitive learning problem becomes one of density estimation, and the costs
affect only the threshold, not the estimator. This may lead one to use a rich model set leading to
complex classifiers. However, the choice to employ a simple classifier brings many advantages:
ease of implementation, a lesser number of parameters to estimate, a reduced risk of over-fitting,
and consequently simplified regularization procedures. Coupled with the complexity of real-world
data sets, misspecified models are frequently encountered in practice. In this case, we demonstrate
that thresholded ML is suboptimal, and that the minimum risk solution varies with the ratio of
misclassification costs.

The problems with minimizing the true empirical risk, a non-smooth function, are well-known:
for zero-one loss, the idea of smoothing out the indicator function appears in Horowitz (1992). In
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this paper, we employ a sigmoidal approximation of the empirical risk to yield a novel minimizer
of the loss under asymmetric misclassification cost values. Rather than arguefor its optimality,
this estimator is used as a basis for comparison and to argue for the relative merits of existing
cost-sensitive techniques. We show analytically that the negative weightedlog likelihood serves as
an upper bound to the sigmoidal empirical risk. Based on the convexity of thenegative weighted
log likelihood and forthcoming numerical results, we will argue that weighted ML is generally the
preferred technique.

2. Classification Model

In the following, we adopt a probabilistic model for the classification task: assume that the true
posterior probabilityp(y|x) of classy∈ {−1,+1} given received feature vectorx ∈ R

D is known.
Let c(y,x) denote the cost of a misclassification when the true class isy for featurex, minus the cost
of a correct prediction. Note that in general,c is feature-dependent, although in many applications,
c(y,x) = c(y). If there is also no cost for a correct decision, thenc(y) is simply the cost of a false
positive (y=−1) or false negative (y=+1). The optimal Bayesian decision rule is to predict ˆy=+1
if (Duda et al., 2001):

p(+1|x)
p(−1|x)

> co(x),

whereco(x) =
c(−1,x)
c(+1,x) > 0. The optimal decision rule may be written as:

ŷ(x) = sgn[ f (x)− lnco(x)] , (2)

where ŷ(x) is the predicted class given feature vectorx, sgn is the signum function sgn(x) =
{

1 x> 0
−1 x≤ 0

, and f (x) is the discriminant function:

f (x) = ln
p(+1|x)
p(−1|x)

.

It should be noted that the argument of the signum function may be written in logunits due to the
nonnegativity of the ratio of posteriors and the optimal thresholdco(x).

In practice, we do not have access to the true class posteriors, but rather estimate their values
from available training data. The estimate is denoted byp(y|x;θ), whereθ ∈ Θ is a vector parame-
terizing themodelposterior, andΘ is termed the model set. If the true posterior is in the model set,
denote the true value ofθ by θ∗, such thatp(y|x) = p(y|x;θ∗). The model discriminant is written as

f (x,θ) = ln
p(+1|x;θ)
p(−1|x;θ) , and the classifier takes the form:

ŷ(x,θ) = sgn[ f (x,θ)− lnco(x)] . (3)

This paper is concerned with methods of estimatingθ to minimize risk, and their relation to the
specification of the model set. In order to treat these estimation methods, we briefly outline the risk
minimization framework which allows for the subsequent analysis of the various cost-sensitive loss
functions.
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3. Risk Minimization for Cost-Sensitive Learning

Risk minimization is concerned with choosing a function from a set{ŷ(x,θ) ,θ ∈ Θ} to minimize
the resultingrisk functional

R(θ) =
∫ ∫

L(y,x,θ) p(x,y)dxdy,

whereL(y,x,θ) quantifies the loss incurred by the classifier ˆy(x,θ) in response to labeled data(x,y).
Note that the lossL varies with the featurex. To ease notation throughout the rest of the paper, the
dependence of ˆy onx andθ is implied.

The problems of regression, density estimation, and pattern recognition may all be formulated
within the context of risk minimization, simply by altering the loss functionL, as outlined in Vap-
nik (1998, 1999). In the case of error-minimizing pattern recognition, the classical zero-one loss
function is given by:

L(y,x,θ) = 1(y 6= ŷ) ,

where1(Φ) is the indicator function which equals one whenΦ is true and zero otherwise.
Since we do not have access to the true densityp(x,y), the empirical risk minimization (ERM)

approach substitutes the empirical density:

pemp(x,y) =
1
N

N

∑
n=1

1(x = xn)1(y= yn) ,

whereD = (xn,yn)
N
n=1 is a set ofN labeled observations which are independent and identically

distributed samples drawn from the true joint densityp(x,y), leading to the following expression
for theempirical risk:

Remp(θ) =
1
N

N

∑
n=1

L(yn,xn,θ) . (4)

In order to design a cost-sensitive classifier, a loss function modeling the asymmetry in misclassifi-
cation costs is required. Several alternatives exist. In the following subsections, we describe these
loss functions.

3.1 Thresholded Maximum Likelihood

The traditional (cost-insensitive) ML loss function is given by Vapnik (1998):

L(y,x,θ) =− ln p(y|x;θ) ,

leading to the following expression for the empirical risk:

Rml
emp(θ) =−

1
N ∑

n
ln p(yn|xn;θ) . (5)
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The minimizer of (5) is the well-known ML estimate (Duda et al., 2001):

θ̂ML = argmax
θ∈Θ

ln
N

∏
n=1

p(yn|xn;θ)

= argmax
θ∈Θ

ln
N

∏
n=1

1

1+
p(−yn|xn;θ)
p(yn|xn;θ)

= argmax
θ∈Θ

N

∑
n=1

ln

[

1

1+e−yn f(xn,θ)

]

,

where the second step follows from Bayes’ rule. If the model setΘ contains the true parameterθ∗,
it follows that in the asymptotic limit, we have limN→∞ θ̂ML = θ∗ (Kay, 1993). From (2) and (3), if
we have knowledge ofθ∗, then a threshold shift of lnco(x) yields the optimal classifier. Assuming
continuity of the log likelihood (inθ), we have that limN→∞ ŷ

(

x, θ̂ML
)

= ŷ(x,θ∗), and thus the
thresholded ML estimate yields the minimum risk decision rule for all cost ratios. Once the ML
estimate is available, the cost-sensitive classifier for any cost ratio may be formed by appropriately
adjusting the threshold. There is no need to retrain the classifier if the cost ratio changes. In the
case of a generalized linear model forp(y|x,θ), it may easily be shown (McCullagh and Nelder,
1989; Parra et al., 2005) that the risk function is convex, and an iteratively reweighted least squares
(IRLS) algorithm locates the optimal linear classifier often within a few iterations.

Unfortunately, in many real-world classification problems, the model set (for example, the set of
all hyperplanes) does not contain the true posterior. Notice, for example, that even in the simple case
of Gaussian data, the linear discriminant is only optimal in the case of equal covariance matrices;
nevertheless, linear classifiers are heavily used. (For a comprehensive treatment of misspecified
models in ML, refer to White, 1982.) In such cases, the classifier in the modelset which minimizes
risk will vary with the pcf. As a result, a shift in threshold of the ML solution willyield a sub-
optimal classifier.

3.2 Example: Minimum Risk Hyperplane for Gaussian Data

To illustrate this point, we consider the instructive case of Gaussian densitieswith unequal covari-
ances and a linear classifier function. The purpose of this exercise is not to argue for a simple
Gaussian model or a linear classifier but rather to demonstrate in an analytically tractable case
the problem that arises with thresholded ML when the model is misspecified. Itis assumed that
c(y,x) = c(y).

Consider a linear classifier of the formf (x;θ)= θTx−b, and assume Gaussian class-conditional
densities:

p(x|y) =
1

(2π)D/2 |Σy|
1/2

e−
1
2(x−µy)

TΣ−1
y (x−µy), y∈ {−1,+1} .

Note that by the normality ofx|y, θTx ∼N
(

θTµy,θTΣyθ
)

. Thus, we have:

p(error|y) = p
[

y
(

θTx−b
)

< 0
]

=
1
2



1+y·erf





b−θTµy
√

2θTΣyθ







 . (6)
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Substituting (6) into (1), the expression for the expected loss takes the form:

R(θ,b) =
c(+1)p(+1)

2

[

1+erf

(

b−θTµ+
√

2θTΣ+θ

)]

+
c(−1)p(−1)

2
erfc

(

b−θTµ−
√

2θTΣ−θ

)

. (7)

The optimal hyperplane is the one which minimizes the risk: argminθ,bR(θ,b).
Below, we illustrate an example where the parameters of the data are given by:

µ+ =
[

0.5 0
]T

, µ− =
[

0 0.5
]T

, Σ+ =

[

1 0
0 0.5

]

, Σ− =

[

0.5 0
0 1

]

.

In this case of unequal covariance, the optimal ML classification function isnot linear but instead a
quadric (Duda et al., 2001, Chapter 2).

Figure 1(a) displays the minimum risk quadrics for various values of the pcf, where it is assumed
thatp(+1) = p(−1). The quadrics are related to each other via a threshold shift. On the other hand,
Figure 1(b) depicts the minimum risk planes for the same data, which were computed by minimizing
(7) using numerical optimization techniques. It is clear that the direction of theoptimal plane is a
function of the pcf, and a threshold shift of the minimum error plane is not anoptimal solution to
the risk minimization problem. Figure 1 (c) displays the threshold-shifted ML solutions for various
values of the pcf. The suboptimality of the ML approach is readily apparentby contrasting Figure
1(b) with Figure 1(c). Notice that at the extremes of the pcf, the optimal planes are orthogonal to
each other. Meanwhile, the ML plane has unit slope for all pcf. The risksobtained by applying the
ML and minimum risk planes to the given data are shown in Figure 1(d). In the figure, we normalize
the raw risk of (1) by the “trivial risk”, which is defined as the risk achieved by the scheme:

ŷtrivial = sgn[p(+1)c(+1)− p(−1)c(−1)] .

We call this the “trivial risk” because the decision rule is feature-independent and is strictly a func-
tion of the class priors and misclassification costs. A normalized risk less than 1indicates that the
classification scheme yields a “savings” over the a priori decision rule. The normalization allows us
to quantify the “percentage of savings” achieved by employing a “smart” decision rule.

The curves were generated by averaging over 1000 ensembles, where each ensemble consisted
of N = 1000 training samples. The ML classifier was trained on each ensemble and the resulting
risk computed by substituting the solution into (7). The risk margin between the threshold-shifted
ML solution and that of the minimum risk plane is what is “available” for cost-sensitive learning
algorithms to improve upon. These methods attempt to learn, for each pcf, the minimum risk plane
shown in Figure 1(b), to achieve the dashed cost curve in Figure 1(d).

The difference between the threshold-shifted ML and cost-sensitive paradigms may be under-
stood in terms of ROC analysis—Figure 1 (e) depicts the ROC curves for the thresholded ML and
minimum risk classifiers. In the ML method, the ROC curve is generated by sweeping the thresh-
old of the base classifier across the real line and computing the corresponding error rates. In the
cost-sensitive paradigm, each point on the ROC curve corresponds to adistinct classifier which is
computed by minimizing (7) for a specific ratio of misclassification costs, resultingin values for the
true and false positive rates. Note that one may also produce afamily of ROC curves by sweeping
the threshold of each of these distinct cost-sensitive classifiers, although this is not shown in the
figure.
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Figure 1: Minimum risk classification of Gaussian data with unequal covariance matrices.

3.3 Relabeled Examples

One heuristic to cost-sensitive classification is to modify the training labels to achieve a balance in
class prevalence. In terms of an ERM loss function, this may be written as:

L(y,x,θ) =− ln p[g(x)|x;θ] ,

where the functiong(x) : RD →{−1,+1}, produces a new label for each training sample according
to some criterion. Domingos (1999) proposes MetaCost, which reassigns labels according to the
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Bayesian minimum risk criterion:

g(x) = arg max
y∈{−1,+1}

c(y)p̂(y|x) , (8)

where p̂(y|x) is an estimate of the class posterior probability which is obtained using bagging
(Breiman, 1996). It is typically the examples near the boundary which are re-labeled. The em-
pirical risk follows as:

Rrel
emp(θ) =−

1
N ∑

n
ln p[g(xn)|xn;θ] .

As the re-labeling of (8) varies with the ratio of misclassification costs, the resulting cost-
sensitive classifier is a function of the pcf and thus has the ability to yield the minimum risk es-
timator. The success of the method hinges on the estimation of the posterior probabilities; in the
best case scenario, the re-labeling results in the cost-sensitive boundary approaching the minimum
risk boundary. In contrast to the forthcoming methods, MetaCost does not reweight examples, and
thus the risk function will not dominated by the examples of a rare but costly class. The technique
may be used as a cost-sensitive pre-processing to any classification technique, and not just ML es-
timation of the posterior. In the case of ML, we maximize the log-likelihood but with the altered
labels.

3.4 Weighted Likelihood

A standard approach for developing cost-sensitive classifiers is to weight the training examples
according to the “costliness” of misclassifying that example. This procedure may be viewed in
terms of an ERM loss function (Elkan, 2001; Zadrozny et al., 2003):

L(y,x,θ) =−c(y,x) ln p(y|x;θ) ,

such that the corresponding empirical risk takes the form:

Rwml
emp(θ) =−

1
N ∑

n
c(yn,xn) ln p(yn|xn;θ) . (9)

Weighting the log likelihood has previously been studied as a tool to handle misspecification (Shi-
modaira, 2000). Note that such weighting of examples is equivalent to modifying the proportion of
examples in the training set according to the weightingsc(y,x). If these weightings change, so does
the cost function, and thus the classifier needs to be retrained. In principle, this technique allows the
classification to choose the model inΘ which minimizes risk for the specified cost matrix. More-
over, example-weighting may easily be incorporated into the IRLS algorithm, yielding an iterative
reweightedweightedleast-squares scheme (McCullagh and Nelder, 1989) which minimizes (9)—in
the appendix, we provide a MATLAB implementation.

Notice that if the misclassification costs are highly asymmetric, the more “costly” examples
will be heavily emphasized in the empirical risk function. Furthermore, if thereare only a few such
examples, the classifier is at an increased risk of overfitting, since theeffectivenumber of examples
is much less thanN. This issue plagues any cost-sensitive method which weights the examples
based on cost.
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3.5 Sigmoidal Empirical Risk

In order to relate the risk of (1) with the empirical risk (4), the appropriate loss function is found to
be:

L(y,x,θ) = c(y,x)1(ŷ 6= y) .

Strict equivalence is achieved in the simplifying case ofc(y,x) = c(y)1(ŷ 6= y) assuming that there
is no cost for a correct decision. Generally, the empirical risk follows as:

Remp(θ) = const.+
1
N ∑

n
c(yn,xn)1(ŷn 6= yn)

= const.+
1
N ∑

n
c(yn,xn)u[−yn f (xn,θ)] (10)

where the constant is a summation across the costs of a correct decision and u(x) is the step function:

u(x) =

{

1 x> 0
0 x≤ 0

. Since our goal is to minimize (1), the optimization of the empirical risk under

the direct loss of (10) is of great importance.
Elliott and Lieli (2007) propose to optimize a function closely related to (10) in an econometric

context; employing the notation of this paper, the objective function maximized byElliott and Lieli
(2007) is written as:

Rel(θ) =
N

∑
n=1

ync(yn,xn)sgn[ f (xn,θ)− lnco(xn)] , (11)

and the authors propose simulated annealing to perform the optimization.
Note that both objective functions (10) and (11) are not differentiable due to the non-smoothness

of u and sgn at zero, respectively. In the case of (10), we may approximatethe step function with a
sigmoid :

u(x)≈
1

1+e−x . (12)

Substituting (12) into (10), we obtain the following expression for the approximate empirical risk:

R̃emp(θ) =
1
N ∑

n
c(yn,xn)

1

1+eyn f(xn,θ)
.

The classifierθ which minimizes the empirical risk follows as:

θ̂ = argmin
θ

R̃emp(θ). (13)

The advantage of this approach is that it closely approximates (up to the abilityof the sigmoid
to approximate a step) the true empirical risk. On the other hand, the risk function is non-convex,
complicating the minimization of (13).
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3.6 Relating Sigmoidal Risk to Weighted ML

The need to minimize non-convex functions arises often in practice. A standard trick in optimizing a
non-convex function is to optimize a convex upper bound of the original function. In this subsection,
we show that the negative weighted log likelihood, a convex function, provides a tight upper bound
of the sigmoidal empirical risk.

To see this, note the inequality:

z≤− ln(1−z), z≤ 1. (14)

Substitutingz= 1

1+e
yn f(xn,θ) into (14) results in:

1

1+eyn f(xn,θ)
≤− ln

1

1+e−yn f(xn,θ)
.

Combining these inequalities over the training examples and assuming strict positivity of the weights
c(yn,xn), we obtain:

∑
n

c(yn,xn)
1

1+eyn f(xn,θ)
≤−∑

n
c(yn,xn) ln

1

1+e−yn f(xn,θ)
.

As a result,

R̃emp(θ)≤ Rwml
emp(θ) .

This means that minimizing the weighted negative log-likelihood (9) minimizes an upper bound
on the empirical risk. As will be shown numerically with upcoming examples, this bound is fairly
tight (c.f., Figures 2 and 3). Since the negative weighted log-likelihood is convex, to circumvent the
non-convexity of the sigmoidal empirical risk, one option is to employ the weighted likelihood loss
function.

4. Experimental Evaluation

To assess the performance of the various cost-sensitive approaches(and its dependence onN), and to
support the upper bound relationship of weighted ML to sigmoidal risk, we conducted an empirical
evaluation of the various cost-sensitive learning approaches on several data sets. We first consider
the case of example-independent and synthetic (i.e., exogenous to the features) costs. Later, we
examine a data set where costs are endogenous and depend on the features. We employed a linear
model set of the formf (x,θ) = θTx−b. For all data sets, five-fold cross-validation was employed,
and we plot the mean loss over theN examples (each example is used once for validation) along
with standard errors of the mean.

The prevalence of the positive class is data-set dependent. The pcf was varied from 0.1 to 0.9 in
increments of 0.1. The relationship between the misclassification cost ratio and the pcf is given by:

c(−1)
c(+1)

=
p(+1)
p(−1)

(1−pcf)
pcf

.

Thus, a pcf of 0.5 corresponds to the case where the ratio of misclassification costs is inversely
related to the ratio of class priors [i.e.,c(−1)p(−1) = c(+1)p(+1)].
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The generalization ability of all algorithms benefited fromℓ2 regularization. Thus, the problem
of cost-sensitive learning becomes one of penalized ERM:

θ̂ = argmin
θ

{

Remp(θ)+
λ
2
‖θ‖2

}

. (15)

Where computationally feasible, the value ofλ was determined using a nested cross-validation loop
which tunesλ on the training set; the tuned value is then fed up to the outer cross-validation loop
which evaluates performance on the test set.

The implementation of all cost-sensitive learning methods requires solving the optimization
problem (15). For the 3 likelihood based methods, the Newton-Raphson IRLS algorithm (McCul-
lagh and Nelder, 1989) was employed to solve the optimization. In order to solve the minimum
risk optimization of (13), the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method
(Fletcher, 2000) was employed in conjunction with multiple random restarts: a random starting
vector is chosen, the BFGS algorithm is run, and the training risk evaluated.This process is re-
peated 100 times, and the final solution is selected as the classifier which yieldsthe lowest training
risk among the runs.

4.1 Gaussian Data

Before delving into real-world data sets, we evaluated the various cost-sensitive approaches on the
Gaussian data described in Section 3. This example is instructive as we havea closed-form expres-
sion for the minimum attainable value of risk, and thus can evaluate the convergence properties with
an increased sample size. Figure 2 depicts the cost curves1 for various training sizesN. At N = 10,
there is a substantial loss margin between the minimum risk plane and that which is achieved by
the thresholded ML technique. However, it is clear that the cost-sensitivetechniques are not able
to provide reliable estimates of the minimum risk plane direction with such limited data. Asthe
size of the training set increases, the sigmoidal risk estimator converges to the minimum risk plane.
Notice, however, that with such large sample sizes, the thresholded ML technique is relatively adept
at yielding risk values comparable to the true minimum. The reason for this is that the examples
which are misclassified by thresholded ML and classified correctly by the theother techniques are
mostly the low-cost examples (compare Fig. 1(b) with Fig. 1(c), for example). Also shown in all
plots is the Bayes risk, which is the risk attained by the minimum risk quadric.

4.2 UCI Data

Next, we evaluate the classifiers on several real-world data sets obtainedfrom the UCI database
(Asuncion and Newman, 2007) as well as our previous work on the classification of electroen-
cephalographic (EEG) data in a real-time detection task (Parra et al., 2008).2 Table 1 summarizes
the parameters used in the evaluation of these data sets.

From Figs. 3 (a) and (b), it is once again apparent that given a modestvalue ofN, the benefits
provided by cost-sensitive learners over the thresholded ML approach are not substantial. However,
in Figs. 3 (c) and (d), one observes a tangible loss reduction of the sigmoidal risk estimator over

1. In addition to the ensemble-averaged risk, we also report standard errors of the mean, which follow as the sample
standard deviation of the ensemble-averaged mean, divided by the square root of the number of ensembles.

2. Since only one “ensemble” is available in the experiments with real data, we treat the cost (at test time) of each
example as an iid realization of the risk and report standard errors of themean across examples.

3324



MAXIMUM L IKELIHOOD IN COST-SENSITIVE LEARNING

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

pcf

C
o
st

/
T

ri
v
ia

l
C

o
st

 

 

Thresholded ML
MetaCost
Weighted ML
Sigmoidal
Minimum risk hyperplane
Bayes Risk

(a) N = 10
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(b) N = 100

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pcf

C
o
st

/
T

ri
v
ia

l
C

o
st

 

 

Thresholded ML
MetaCost
Weighted ML
Sigmoidal
Minimum risk hyperplane
Bayes Risk

(c) N = 1000
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(d) N = 10000

Figure 2: Cost curves for Gaussian data with varying training set sizes.In (d), the thresholded ML
and MetaCost curves are nearly equivalent.

Data set N(+) N(−) D λ p(+1)

Haberman 81 225 3 optimized 0.26
Transfusion 178 570 4 optimized 0.24

Magic 6688 12332 10 fixed (0.2) 0.35
Adult 7841 24720 14 fixed (0.2) 0.24
EEG 830 40608 15 fixed (2) 0.02

Table 1: Data set and regularization parameters.N(+) andN(−) refer to the number of positive
and negative examples, respectively.

thresholded ML and MetaCost, whose curves overlap. Lastly, Fig. 3 (e)demonstrates the near-
optimality of weighted ML and its close approximation of the sigmoidal risk minimizing solution.
Note that for this heavily skewed data set, while the total number of examples isN = 41438, only
830 of these are positive exemplars. Note also that a skew in class prevalence leads to asymmetry
in the resulting cost curves.
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(a) Haberman
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(b) Transfusion

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pcf

C
o
st

/
T

ri
v
ia

l
C

o
st

 

 

Thresholded ML
MetaCost
Weighted ML
Sigmoidal

(c) Magic
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(d) Adult

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pcf

C
o
st

/
T

ri
v
ia

l
C

o
st

 

 
Thresholded ML
MetaCost
Weighted ML
Sigmoidal

(e) EEG

Figure 3: Cost curves (with standard errors of the means) for variousreal data sets with synthetic
costs.

4.3 German Banking Data

Finally, we evaluated the risk minimizing classifiers on a publicly available data setcollected by
a German bank: http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html. The data
set details the credit history and biographical information ofN = 1000 past loan applicants, as well
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Figure 4: NPV per applicant: means and standard errors. Solid horizontal lines indicate statistical
significance at thep= 0.01 level.

as whether the loan was repaid. This data set has been used previously toevaluate a novel profit-
maximizing decision rule in the econometrics literature (Lieli and White, 2010).

Upon receiving a loan request, the bank decides either to grant the loan at a certain interest rate,
or rather to invest the loan amount in a risk-free government bond. In thisapplication, it is easier
to work with benefits rather than costs; as such, the net present value (NPV), measured in Deutsche
Marks (DM) of extending the loan must be compared with the NPV of rejecting the application,
which is zero as outlined in Lieli and White (2010). The NPV of extending the loan depends on
whether the loan is repaid, and thus the optimal decision rule takes into account the probability of
repayment as well as the potential profit to be made on the loan. Thus, the aimof the evaluation
is to predict, from an applicant’s credit history and biographical information, the likelihood of the
applicant repaying the loan which he/she is seeking.

In the framework described in the earlier sections, we havec(y,x) = y ·π(y,x), whereπ(y,x)
denotes the NPV associated with predicting ˆy=+1 when the truth isy (repayment:y=+1, default:
y= −1). Please refer to Lieli and White (2010) for the precise mathematical relationship between
the NPV π and the individual features inx. In the evaluation, we used theD = 5 dimensional
feature set chosen by Lieli and White (2010), as well as their proxies for the interest and risk-
free government rates. Note that the “costs” are both example-dependent and endogenous to the
problem. We conducted a leave-one-out cross-validation of the thresholded ML, weighted ML, and
sigmoidal risk estimators on thisN= 1000 example data set (MetaCost is not applicable to problems
with example-dependent costs).

Figure 4 displays the mean NPV per applicant, along with standard errors. On average, the
means obtained by the thresholded ML, weighted ML, and sigmoidal risk estimators are DM 3.0
, DM 19.8 , and DM 21.2 . The standard errors are given by DM 18.1 , DM 14.7, and DM 11.9,
respectively (a negative value of NPV indicates an overall loss for the classification scheme). We
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performed pairwise sign-tests of statistical significance to determine if performance differs signifi-
cantly for the classifiers. A statistically significant improvement in NPV is achieved by both WML
and sigmoidal risk estimators over the thresholded ML solution (p < 0.01). On the other hand,
statistical significance cannot be established between WML and sigmoidal risk (p ≈ 0.9). This
empirical finding supports the analytical result of negative weighted log likelihood upper bounding
empirical loss.

5. Discussion

It is interesting to point out the process which led to the findings presented inthis paper. Initially,
we were motivated by the observation that with a misspecified model, the directionof the minimum
risk hyperplane is a function of the ratio of misclassification costs and the class priors. Since the
ML approach is inherently to shift the minimum error hyperplane, we soughtto develop an estima-
tor which, given a ratio of misclassification costs, will find the direction required to minimize risk
rather than maximizing likelihood. The expectation was that such an estimator would provide large
performance gains over the ML approach. This led us to the development ofthe sigmoidal empiri-
cal risk minimizer. During the algorithm evaluation process, several findings emerged. Firstly, the
search for the minimum risk hyperplane is non-trivial: regularization techniques proved to be nec-
essary, particularly in the case of a limited training set. Moreover, both the existing and proposed
cost-sensitive learning techniques yield the greatest benefits over thresholded ML when presented
with large amounts of training data. When abundant data is available, the sigmoidal risk estimator
typically outperforms all other methods, but weighted ML yields quite comparable values.

When the model set includes the true posterior, the threshold-shifted ML approach is optimal.
This naturally brings us to the following question: why not employ a rich model set (for example,
a multi-layer neural network), estimate its parameters using ML, and then shiftthe threshold by
the log of the misclassification cost ratio? With an infinite amount of training data, we are sure to
arrive at the lowest attainable risk. However, there are a few reasonswhy this procedure may not be
desirable: a rich model set consists of many parameters, which in turn requires a large amount of
training data to prevent over-fitting. From the so-calledstructural risk minimizationprinciple, it is
well-known that a simpler model set yields empirical risks that are closer to thetrue risk (Vapnik,
1998). Moreover, the optimality of the ML solution is not guaranteed for a finite amount of data.
Thus, rates of convergence are key to determining the best approach.

In general, the choice of model complexity hinges upon several factors:the dimensionality of
the feature space in relation to the number of available examples, the signal-to-noise ratio, and also
the skew in class prevalence. For example, in applications involving a rare and expensive class,
the key is to yield accurate decisions for this infrequent class. If the number of such examples
is low, then even if the number of overall examples is high, a complex model will generally be
undesirable. In other words, the effective sample size is closer to the number of costly examples
than the entire sample sizeN. Consequently, the number of free parameters needs to be limited to
prevent overfitting. The design issue in cost-sensitive learning is thus how best to use these few
degrees of freedom: whether to “prioritize” correct decisions on the costly training examples, or
rather to “spend” the degrees of freedom on achieving the best model fit.

The results with Gaussian data presented above appear to indicate that the sigmoidal risk min-
imizer tends to the true minimum risk model given enough data. However, the weighted ML esti-
mator provides a tight upper bound on the sigmoidal empirical risk and thus thissolution is not far
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from optimal. Given that the negative weighted likelihood is convex, weightedML thus becomes
the preferred cost-sensitive technique.

Lastly, as seen in Figure 2, both the opportunity and the challenge in cost-sensitive learning lies
in the ability to estimate the minimum risk model with limited data. Thus, the focus going forward
should be on sparse (i.e., with few examples relative to the dimensionality of the feature space)
inference of the minimum risk classifier.

6. Conclusion

This paper has elucidated the role of the specification of the model set in the problem of learning
with asymmetric costs or class prevalences. It was shown that in the case ofthe model family includ-
ing the true posterior, thresholding the ML solution is guaranteed to asymptotically minimize risk.
In this case, cost-sensitive learning is synonymous with threshold adjustment. On the other hand,
with a misspecified model, the risk minimizing solution is a function of the misclassificationcost
ratios, and thresholding the ML estimate is sub-optimal. A novel estimator based on a sigmoidal
estimation of the empirical risk was presented and shown to outperform conventional techniques
provided enough data; however, the negative weighted log likelihood wasanalytically and empiri-
cally shown to tightly upper bound the sigmoidal loss. Thus, we advocated for the weighted ML as
the preferred cost-sensitive learning technique.
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Appendix A. MATLAB Code for Weighted Maximum Likelihood

Provided below is a basic MATLAB implementation of the weighted ML approach tocost-sensitive
learning using iteratively reweighted weighted least squares. For a more detailed version as well as
implementations of thresholded ML and sigmoidal risk minimization, please refer tohttp://bme.
ccny.cuny.edu/faculty/lparra/cost .

function v = wml(x,y,c,lambda)
% x - N-by-D matrix of input samples \in (-inf,inf)
% y - N-by-1 vector of binary labels \in {0,1}
% c - N-by-1 vector of costs \in (0,inf)
% lambda - regularization parameter \in (0,inf) (defaults t o 0)
% v - v(1:D) normal to separating hyperplane, v(D+1) thresho ld
% (c) Lucas C. Parra, Jacek P. Dmochowski
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if nargin<4; lambda=0; end;
[N,D]=size(x);
s = std(x); x = x./repmat(s,[N 1]);
x = [x ones(N,1)];
v = zeros(D+1,1);
lambda = [0.5*lambda*ones(1,D) 0]’;
while 1

vold=v;
mu = exp(x*v - log(1+exp(x*v)));
w = ( mu.*(1-mu) ).*c;
e = (y - mu).*c;
grad = x’*e - lambda .* v;
inc = inv(x’*(repmat(w,1,D+1).*x)+diag(lambda)) * grad;
v = v + inc;
if norm(vold) & subspace(v,vold)<10ˆ-10, break, end;

end;
v(1:end-1) = v(1:end-1)./s’;
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