Journal of Machine Learning Research 11 (2010) 665-685 Stdair/08; Revised 10/09; Published 2/10

Second-Order Bilinear Discriminant Analysis

Christoforos Christoforou CCHRISTOFOROU@RKILEADERS.COM
R.K.I Leaders Limited

Agias Triados 26A

7100, Aradippou, Cyprus

Robert Haralick HARALICK @GC.CUNY.EDU
Department of Computer Science

Graduate Center, City University of New York

New York, NY 10011, USA

Paul Sajda PSAJDA@COLUMBIA.EDU
Department of Biomedical Engineering

Columbia University

New York, NY 10027, USA

LucasC. Parra PARRA@ENGR.CCNY.CUNY.EDU
Department of Biomedical Engineering

City College, City University of New York

New York, NY 10031, USA

Editor: Mikio Braun

Abstract

Traditional analysis methods for single-trial classificatof electro-encephalography (EEG) focus
on two types of paradigms: phase-locked methods, in whietathplitude of the signal is used as
the feature for classification, that is, event related pigdbm and second-order methods, in which
the feature of interest is the power of the signal, that ignéevelated (de)synchronization. The
process of deciding which paradigm to usedghocand is driven by assumptions regarding the
underlying neural generators. Here we propose a methogttinities an unified framework for the
analysis of EEG, combining first and second-order spati@dt@mporal features based on a bilinear
model. Evaluation of the proposed method on simulated deasthat the technique outperforms
state-of-the art techniques for single-trial classifimatior a broad range of signal-to-noise ratios.
Evaluations on human EEG—including one benchmark dataa®ttinie Brain Computer Interface
(BCI) competition—show statistically significant gains lassification accuracy, with a reduction
in overall classification error from 26%-28% to 19%.

Keywords: regularization, classification, bilinear decompositinaural signals, brain computer
interface

1. Introduction

The work presented in this paper is motivated by the analysis of functioagl imaging signals
recorded via electroencephalography (EEG). EEG is measureddicnesand typically at multiple
scalp locations, providing a spatio-temporal data set of the underlyimalresttivity. In addition,
these measurements are often taken over multiple repetitions or trials, whisrenaiadiffer in the
type of stimulus presented, the task given to the subject, or the subjepimees Analysis of these
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signals is often expressed as a single-trial classification problem. Théogadhe classifier is to
determine from the EEG data which stimulus was presented or how the sudgponded. Many
of these classification techniques were originally developed in the coritBraim Computer Inter-
faces (BCI) but are now more widely used to interpret activity associaitbicheural processing.

In the case of BCI algorithms (Wolpaw et al., 2002; Birbaumer et al., 19%hKertz et al.,
2002, 2003) the aim is to decode brain activity on a single-trial basis inr dodprovide a di-
rect control pathway between a user’s intentions and a computer. 8unkegace could provide
“locked in patients” a more direct and natural control over a neurdipesss or other computer
applications (Birbaumer et al., 1999). Furthermore, by providing an additicommunication
channel for healthy individuals, BCI systems can be used to increadegiivity and efficiency in
high-throughput tasks (Gerson et al., 2006; Parra et al., 2008).

Single-trial discriminant analysis has also been used as a research stadlyahe neural cor-
relates of behavior. By extracting activity that differs maximally between tqpeemental condi-
tions, the typically low signal-to-noise ratio of EEG can be overcome. Thétims discriminant
components can be used to identify the spatial origin and time course of stireghmise spe-
cific activity, while the improved SNR can be leveraged to correlate variabilityearal activity
across trials to behavioral variability and behavioral performance (Btiiles et al., 2006; Gerson
et al., 2006; Philiastides and Sajda, 2006) In essence, discriminansaredigs to the existing set
of multi-variate statistical tools commonly used in neuroscience research \(AN@oteling T2,
Wilks’ A test, etc.).

1.1 Traditional EEG Analysis

In EEG the signal-to-noise ratio (SNR) of individual channels is low, o&tror below -20dB.
To overcome this limitation, all analysis methods perform some form of aveyagither across
repeated trials, across time, or across electrodes. Traditional EEGiarealgrages signals across
many repeated trials for each individual electrode. Typical in this caseagaimge the measured
potentials following stimulus presentation, thereby canceling uncorrelaisd tiwt is not repro-
ducible from one trial to the next. This averaged activity, called an ewdated potential (ERP),
captures activity that is time-locked to the stimulus presentation but cancelsethdiscillatory
activity that is not locked in phase to the timing of the stimulus. Alternatively, mauies com-
pute the oscillatory activity in specific frequency bands by filtering andusag the signal prior
to averaging. Induced changes in oscillatory activity are termed eviaedesynchronization or
desynchronization (ERS/ERD) Pfurtscheller and da Silva (1999).

Surprisingly, discriminant analysis methods developed thus far by the nedeliming commu-
nity have followed this dichotomy: First order methods in which the amplitude dEE@ signal is
considered to be the feature of interest in classification—correspotawlBg P—and second-order
methods in which the power of the feature is considered to be of importanctagsification—
corresponding to ERS/ERD. First order methods include temporal filteridgraesholding (Bir-
baumer et al., 1999), Fisher linear discriminants (Parra et al., 2005;8taré al., 2002), hierarchi-
cal linear classifiers (Gerson et al., 2006) and bilinear discriminant sisgpyrholm et al., 2007;
Tomioka and Aihara, 2007). Second-order methods include logisticsgigrewith a quadratic term
(Tomioka et al., 2007) and the well known common spatial patterns method (Ra&mpser et al.,
2000) and its variants: common spatio-spectral patterns (CSSP) (Lemm2&ab), and common
sparse spectral spatial patterns (CSSSP) (Dornhege et al., 2006).
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In the past, the process for choosing features for classification leasadehocand driven pri-
marily by prior knowledge and/or assumptions regarding the underlyingppbysiology and task.
From a machine-learning point of view, it seems limiting to comarptiori to only one type of fea-
ture. Instead, it would be desirable for the analysis method to extraciédvaméneurophysiological
activity de novowith minimal prior expectations.

In this paper we present a new framework that combines both first andderder features in
the analysis of EEG. Through a bilinear formulation, the method can simultdpedestify spatial
linear components as well as temporal modulation of activity. These spati@tahgomponents
are identified such that their first and second-order statistics are maxinifédedt between two
conditions. Further, through the bilinear formulation, the method exploits #tesg@mporal nature
of the EEG signals and provides a reduced parametrization of the high dimahdata space. We
show that a broad set of state-of-the-art EEG analysis methods canabecterized as special
cases under this bilinear framework. Simulated EEG data is then used totevaduormance of
the different methods under varying signal strengths. We concludeather pvith a performance
comparison on human EEG. In all instances the performance of the preetirod is comparable
or superior to the existing state-of-the-art.

2. Second-Order Bilinear Discriminant Analysis

To introduce the new method we start by formally defining the classificatidslgmmoin EEG. We

then present the bilinear model, discuss interpretation in the context of &te&stablish a link to
current analysis methods. The section concludes with the optimization critartbregularization
approaches. As the title of this section suggests, we termed our method SaterdBilinear

Discriminant Analysis (SOBDA).

2.1 Problem Setting

Suppose that we are given examples of brain activity as a set of {{algn}N_;,Xn € RP*T y, €
{—1,1}, where for each examplethe matrixX, corresponds to the EEG signal withchannels
andT time samples ang, indicates the class to which this example corresponds. The class label
may indicated one of two conditions, that is, imagined right or left hand moversgémulus or
non-stimulus control conditions, etc. Given these examples the task is thesdiotghe class label

y for a new trial with dat&X.

2.2 Second-order Bilinear M odel

To solve this problem we propose the following discriminant function
f(X;0) = CTrace(uTxv> +(1-C) Trace(/\ATX BBTXTA> W, 1)

where the parameters @e= {U ¢ RP*R V e RT*R A e RP*KB e RT*T', w, € R, A e diag(K))|

Ai € {—1,4+1},C € [0,1]. Some of these parameters may be specified using prior knowledge as
will be discussed later. The scald®s K and T’ are chosen by the user and denote the rank of
matrix U,V A andB. Typically we useT’ = T. The goal will be to use thB examples to optimize
these parameters such that the discriminant function takes on positives vatuexamples with

Yn = +1 and negative values fgr, = —1. To accomplish this we will use a standard probabilistic
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formalism—Iogistic regression—which will permit us to incorporate regularipatiiteria as prior
probabilities on the parameter as will be explained in Sections 2.6 and 2.8.

2.3 Interpretation and Rationale of the M odel

The discriminant criterion defined in (1) is the sum of a linear and a quadeati;; each combining
bilinear components of the EEG signal. The first term can be interpretedspati@-temporal
projection of the signal that captures the first-order statistics of the si§patifically, the columns
u; of U represenR linear projections in space (rows Hf. Similarly, each of thdk columns ofvy
in matrix V represent linear projections in time (columns@Qf By re-writing the term as:

TracgU ' XV) = TracgVU ' X) = TracgW ' X),

where we definedV = UV, it is easy to see that the bilinear projection is a linear combination of
elements oK with a rankR constraint olV. This expression is linear iK and thus captures di-
rectly the amplitude of the signal. In particular, the polarity of the signal (mesétvoked response
versus negative evoked response) will contribute to discrimination if it msistent across trials.
This term, therefore, captures phase-locked event related potential EEB signal. This bilinear
projection reduces the number of model parametei/ dfom D x T dimensions tdRx (D+T)
which is a significant dimensionality reduction that alleviates the problem affatiag in param-
eters estimation given the small training set size. This projection assumesdhgdrtarators of
class-dependent variances in the data have a low-rank contributiorchiodata matrixX. This
holds true in EEG data, where an electrical current source which is ypateic in the brain will
give a rank-one contribution to the spatio-tempatdDyrholm and Parra, 2006).

The second term of Equation (1) is the power of spatially and temporally vesigignals and
thus captures the second-order statistics of the signal. As beforecelachn of matrixA andB
represent components that project the data in space and time respe@imeénding on the struc-
ture one enforces in matrB, different interpretations of the model can be achieved. In the general
case where no structure @is assumed, the model captures a linear combination of the elements
of a rankT’ second-order matrix of the sign&B(XB)". In the case where Toeplitz structure is
enforced orB (see Section 2.7), théhdefines a temporal filter on the signal and the model captures
powers of the filtered signal. Further, by allowiBgo be learned from the data, we may be able to
identify new frequency bands that have so far not been identified iel mxperimental paradigms.
The spatial weight#\ together with the Trace operation ensure that the power is measured, not in
individual electrodes, but in some component space that may refledtyadistributed across sev-
eral electrodes. The diagonal matfixpartitions theK spatial components (i.&€ columns ofA)
into those that contribute power positively and those that contribute posgatimely to the total
sum. Since each column &f measures the power from different sources, then by multiplying the
expression with\ we capture the difference in power between different spatial companéys
motivation consider the task of distinguishing between imagined left versushdmd movements.

It is known that imagining a movement of the left hand reduces oscillatoryityabiver the motor
cortex of the right hemisphere, while an imagined right-hand movementesdscillations over
the left motor cortex. Each of these cortical areas will be captured byeaetit spatial distribution
in the EEG. If we limit the columns oA to two, then these columns may capture the power of
oscillatory activity over the right and left motor cortex respectively. Omeildl like one of these
two terms to contribute positively providing evidence of the observation beigrio the first class,
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while the second should contribute negatively, supporting the observataniag from the second
class. This can be achieved with the proper choic&.dfinally, the parametet defines a convex
combination of the first-order term and the second-order t€rm.1 indicates that the discriminant
activity is dominated by the first-order featur€s= 0 indicates that the activity is dominated by
second-order features, and any value in between denotes the impgoofamte component versus
the other.

2.4 Incorporating Prior Knowledge into the M odel

Realizing that the parameters of the SOBDA model have a physical meaningi{iaenda, map
the sensor signal to a current-source spac@re temporal weight on a source signal dmdan

be arranged to represent a temporal filter) it becomes intuitive for theriexgnter to incorporate
prior knowledge of an experimental setup in the model. If the signal of isttéseknown to be in

a specific frequency band, one can fix maixo capture only the desired frequency band. For
exampleB can be fixed to a Toeplitz matrix with coefficients corresponding to an 8Hizhand-
pass filter, then the second-order term is able to extract power in theladpithwhich is known to be
modulated during motor related tasks. Itis often the case that experimeatera hypothesis about
the temporal profile of the signal of interest, for example the P300 sigrthledN170 are known
EEG responses with a positive peak at 300ms or negative peak at 1Adnaseaassociated with
surprise or processing of faces respectively. In such a scenaraxgerimenter can fix the temporal
profile parameteyY to emphasize time samples around the expected location of the peak activity and
optimize over the rest of the parameters. The model also provides the abilitgdoete information
from fMRI studies. fMRI has high spatial resolution and can providetlona within the brain that
may be known to participate in the processing during a particular experimgentadligm. This
location information can be incorporated into the present model by fixingodwtas parametens;
andato reflect a localized source (often approximated as a current dipdie)réfnaining temporal
parameters of the model can then be optimized.

2.5 SOBDA asa Generalized EEG Analysis Framework

The present model provides a generic framework that encompasgesamof popular EEG analy-
sis techniques. The following list identifies some of the algorithms and how éheteito the model
used in the SOBDA framework:

e SetC=1,R=1 and choose temporal componerb select a time window of interest (i.e.,
setvj = 1if j is inside the window of interest, = O otherwise). Learn the spatial filteus
This exactly corresponds to averaging over time and classifying in thersgpece as in Parra
et al. (2002, 2005)

e SetC =1 and select somR > 1 and choose the component vecteyso select multiple
time windows of interest as in 1. Learn for each temporal window the quurelng spatial
vectoru, from examples separately and then combine these components by learniray a line
combination of the elements. This corresponds to the multiple window hierarchasalfier
as in Gerson et al. (2006) and Parra et al. (2008)

e SetC =1, R= D while constrainingJ to be a diagonal matrix and select, separately for each
channel, the time window; which is most discriminative. Then train the diagonal terms of
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U resulting in a latency dependent spatial filter (Luo and Sajda, 2006aynatieely, in the
first step, use feature selection to find the right set of time windevesmultaneously for all
channels (Luo and Sajda, 2006b).

e SetC = 1R =1 and learn the spatial and temporal componentssimultaneously. This
reduces to the rank-one bilinear discriminant as in Dyrholm and Paré&)20

e SelectC =1 and someR > 1 and learn all columns of the spatial and temporal projection
matrixU andV simultaneously. This results in tialinear Discriminant Component Analysis
(BDCA) (Dyrholm et al., 2007).

e SetC =0, K =2 and fixB to a Toeplitz structure encoding a specific frequency band and
set the diagonal of\ to be[1 — 1]. Then learn the spatial componeht This then reduces
to the logistic regression with a quadratic term (Tomioka et al., 2007) whiclteteceto the
Common Spatial Patters (CSP) algorithm of Ramoser et al. (2000).

e DefineX to be the concatenation &f with itself delayed in time by samples, where is
specified by the user, fig to a Toeplitz structureg = 0, andA € R?P*2, |earn the matrix.
This configuration can be related to the Common Spatio-Spectral Patterittalgof Lemm
et al. (2005).

2.6 Logistic Regression

To optimize the model parametdisV, A andB we use a Logistic Regression (LR) formalism. The
probabilistic formalism is particularly convenient when imposing additional sitatigproperties on
the coefficients such as smoothness or sparseness. In addition, kpetieace, linear LR performs
well in strongly overlapping high-dimensional data-sets and is insensitwatliers, the later being
of particular concern when including quadratic features.

Under the Logistic Regression model the probability that a trial belongs te gkfter seeing
dataX is given by the class posterior probability

1

P(y|X;0) = T eyim

With this definition, the discriminant criterion given by the log-odds ratio of thetgrior class
probability

Ply=+1|X) .
095, ——1%) = F(Xi®):

is simply the discriminant function which we chose to define in (1) as a sum eairlared quadratic
terms. The Likelihood of observing thidexamples under this model is then given by
N .
L(6) = — Y log(1+4e WnfXn®)). 2)
n=1
Training consists of maximizing this likelihood using a gradient assent algorimalytic gradi-
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ents of the log likelihood (2) with respect to the various parameters are bive

oL(0) A
= X
o, an:lYnT[n nVr,
oL(0) i
= cy X
avr n:]-ynT[nur n»
oL(® -
a;r) = 21-C)\ Y ynTuXnBB' X &, )
n=1
oL(0) c TANAT
= - /\
o, 2(1 C)nz:lynmx ANAT XDy 4)
where we define
e Ynf(Xn:6)
T =1=P(ynlXn) = T~ o)

andu;, Vvj, g andb; correspond to thig, columns ofU,V, A andB respectively.

2.7 Enforcing Structure on B

If matrix B is constrained to have a circular Toeplitz structure then it can be repeesasB =
F~DF, whereF denotes the orthonormal Fourier matrix wih' = F~1, andD is a diagonal
complex-valued matrix of Fourier coefficients. In such a case we camite-Equations (3) and (4)
as

e N ey T

o - 2(1—C)n;ynnhxn|= DDM"FX/ a .
oL® _ A T Ty FH) 4
e 2(1—C)n;ynn-n (FXnA/\A XF )“ d.

and the parameters are now optimized with respect to Fourier coeffickeatgéD); . An iterative
gradient descent optimization procedure can be used to solve the minimizZadiez a

This way of modelingB opens up a new perspective on the capabilities of the model. These
last two equations are equally applicable for any choice of orthonornseé baFor example, the
columns ofF can represent a set of wavelet basis vectors. We note that a wassistdan be
thought of as time-frequency representation of the signal; hencegisefection of a wavelet basis
allows for the method to not only capture the stationary power of the signaklbo the local
changes in power within th& samples of matrix.

2.8 Regularization

Due to the high dimensional space in which the model lies and the limited samplebkvdilang
training (typically in the order of 100), a maximum likelihood estimate of the parasef over-
train the data and have poor generalization performance. To ensutgegoeralization performance
additional regularization criteria are required. The probabilistic formulaifdrogistic Regression
can incorporate regularization terms as prior probabilities resulting in maxinpostariori (MAP)
estimates.
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We choose Gaussian process priors (Rasmussen and Williams, 2005) @arithes parame-
ters of the model and ensure smoothness by choosing the proper noeamatrices. Spatial and
temporal smoothness is typically a valid assumption in EEG (Penny et al., 2@pgcifically,
the spatial components of the model (i.e., columnblpdndA) follow a normal distribution with
Ui ~ AN(0,Ky) , & ~ N(0,K,) where the covariance matric&s, andK, define the degree and
form of the smoothness afanda. This is done through choice of covariance function: iLbe a
spatial or temporal measure in contextafFor instance is a measure of spatial distance between
data acquisition sensors, or a measure of time difference between two samtile data. Then
a covariance functiok(r) expresses the degree of correlation between any two points with that
given distance. For example, a class of covariance functions thaelkasslhiggested for modeling
smoothness in physical processes, theévtatlass, is given by:

1-v v
Knatern(f) = ?(V) <\/5r> B(@r) |

| 1

wherel is a length-scale parameter, ani a shape parameter. Paramétean be roughly though
of as the distance within which points are significantly correlated (RasmassEWilliams, 2005).
The parametev defines the degree of ripple. The covariance ma{riis then built by evaluating
the covariance function

(K)ij = 0% Kntatern(rij)

wherer; ; denotes the physical distance of senisfitom sensorj, anda? defines the overall scale
parameter. Similarly, the Gaussian prior can be used on the columns of thedmptrixV (i.e.,
mv~ A(0,Ky)). The Magérn function was preferred because it allows for a low parametrization of
the covariance matrix (two parameters define the entire covariance)sbieause of the physical
and intuitive interpretation of its parameters. Specifically the paranhégeassociated with the
physical concept of distance between measurements (either in space Jorfhieunderstanding
of the parameters is useful since it allows for an educated search glirategting the proper values
for these parameters.

Regularizing logistic regression amounts to minimizing the negative log-likelihdusl the
negative log-priors, which can be written as:

R K T
argUN,rRiQWO—L(G) +% <r;UrTKu1Ur +v, K, v, +kzla;Kalak+t;thKtlbt> . (5
where we ignored constants that have no effect in the optimization. Theianges of these priors
are given byK ;, K, € RP*P andK,,Kp € RT*T and control the smoothness of the parameter space.
In the case of the spectral regularization we use the identity matrix for trariaoce Ky, = o2l,
since the smoothness assumption does not necessarily hold in the spaciaai.d

Following Rasmussen and Williams (2005) the shape parameter was chosewn 0100 for
the spatial components and-= 2.5 for the temporal components. Reasonable choices for the length-
scale parametérmay be 25ms, 50ms or 100ms and in space 1cm, 2cm, and 3cm. Cross-validation
was used to select among these choices. The overall scale parametenes chose to be the same
for space and time components, but allowed to take on separate valueg fimsttand second
order component. We used a line-search procedure in combination wits-eatidation to select
appropriate values fas.
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2.9 Optimization

Optimization (5) is achieved using a coordinate decent type algorithm (Nj&l866) with param-
etersU,V andA, B optimized separately. We obtain analytic expressions for both the gradignt a
the Hessian of the function, however, in the optimization only the gradienivafion is used. We
first optimize the parametet$andV, then optimize parametefsandB and finally perform a line
search to determine the value@f

Given that the optimization function is non-convex, the gradient decentomethly finds local
minima. In fact, the performance of SOBDA is particularly sensitive to the stpetinditions of the
spectral parameteat (parameted enters the model when enforcing a Toeplitz structurd3pree
section 2.7.), while it is quite robust to the choice of initial conditions for the neimgparameters
U, V andA. A common technique in global optimization is to use parameter seeding and multiple
runs of the optimization procedure. For most parameters it was sufficiegtadew random initial
starting points. However, for the spectral parameter we found it impddamitialize to a frequency
band that was expected to carry useful information, for example, &Hz3Note that the present
learning task falls into the class of bi-convex optimization problems for whifitiexit algorithms
have been developed (Floudas, 1997).

3. Reaults

We evaluated our algorithm on 3300 simulated data sets as well as 6 reale&@ings, includ-

ing a data set used in the Brain Computer Interface Competitions Il (Blankeaiz, 2004). The
simulation aims to quantify the algorithm’s performance on a broad spectrurongdiitons and

various noise levels, as well as to compare the extracted spatial, tempdriiegnency compo-
nents with ground truth. The evaluation on real data set compares tlsevaiagation performance
of the proposed method with three popular methods used in EEG analysisCAnBé&ults show
that our method outperformed these methods, decreasing the overafladties error rates from
26%-28% to 19%. For the data set of the BCI competition we also repoxrpeahce results on
the independent test set and compare to the previous results.

The three methods we will compare with are Bilinear Discriminant ComponenysindBDCA)
(Dyrholm et al., 2007), Common Spatial Patterns (CSP) (Ramoser et ab), 200@ Matrix Logistic
Regression (MLR) (Tomioka et al., 2007). For the evaluation on the @i€@l data sets, we further
compare our method to the trace norm regularized Matrix Logistic Regre@itirR) (Tomioka
and Aihara, 2007). These may be considered current state-ofttheettrods in EEG single-trial
analysis. In our evaluation we use a rank one approximation for the BOXJA Byrholm et al.
(2007). We implemented CSP following the description of Ramoser et al. J20@Dused two spa-
tial patterns (SP) and employ a logistic regression classifier on the resuRing tBe case of MLR
we use the rank-2 approximation as described in the corresponding (Japaoka et al., 2007).
For sMLR we used the implementation provide in Tomioka and Aihara (2007keSdsP,MLR
and sMLR require the data to be band-pass filtered to the frequency odshteata sets where
filtered in the range of 8Hz-30Hz for these two methods. For our algoriteruse rank-1 for the
first-order parameterd andV with R= 1. For the spatial parametér we setK = 2 allowing
for two spatial patterns, while we enforce a Toeplitz structurdoWe initialize the parameters

1. We discard the Hessian information because of its computational mdghea non-convexity of the optimization
function. The Hessian of a non-convex function would need to be appated by a positive definite matrix in each
iteration.
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U,V andA by a random assignment. While we initialize the maBixo encode a band-pass filter

in the range of Blz— 30Hz as in the case of CSP, MLR, sMLR. As discussed in Section 2.7, en-
forcing a Toeplitz structure oB implies a representation & in the formB = F~DF, whereF
denotes the orthonormal Fourier matrix witl = F~1, andD is a diagonal complex-valued matrix

of Fourier coefficients. In our implementation, we optimize the coefficientseofithtrixD instead

of B directly.

3.1 Simulated EEG Data

Simulated data for a two-class problem was generated using standardilBE@tion software
(GmbH, 2006). This software can generate electrode measurementshadssumption of dipolar
current sources in the brain. We used 3 dipoles at three differeritdosawith one dipole used to
generate evoked response activity, one dipole to generate indudkatogcactivity, and one dipole
to generate unrelated noise/interference. The first dipole’s compeimeatates a P300 evoked
response potential (ERP) signal. We used a half-sinusoid lasting 125mthevipeak positioned at
300ms after trial-onset and a trial-to-trial Gaussian temporal jitter with stdrtdatiation of 10ms.
The second dipole’s component simulates ERS/ERD in the frequency bha8tdzao 30Hz. A
variable signal in this frequency band was generated by bandpagadilseruncorrelated Gaussian
process. The third dipole was used to generate noise in the sourcespaesenting brain activity
that is not related to the evoked/induced activity. Electric potentials-at31 electrode locations
were generated corresponding to 500ms of EEG signal sampled at IU0H50 samples). In
addition to this rank-one noise we added noise to each sensor reprgsathin sources of noise
(muscle activity, skin potentials, inductive noise, amplifier noise, etc.). ABengources were
white. Trials belonging to the first clasg,(= +1) contained the ERP and ERD/ERS source signals
scaled appropriately to achieve a specified SNR for each data set. ddrels#ass was generated
by only including the noise with no ERP or ERD/ERS activity. A data set is spédify indicating
the SNR for the ERP component and the SNR for the ERD/ERS component. Aft6@0 trials for
each class were generated for each classification problem. The SN&RERBIcomponent is in the
range of -33dB to -13dB, and in the range of -22dB to -10dB for thdlasiry component. This
is a very broad range in terms of SNR. We note that -20dB translates to tra bgjng 10 times
smaller than the noise. ERP signals are known to be as low28dB so this evaluation captures
some extreme cases of SNR. We generated 35 data sets for each comloh&tidt resulting to a
total of 3300 data sets.

3.2 Performance Results on Simulated Data

The simulation results are summarized in Figure 1. The top two rows show tioerpance of each
of the methods as a function of the SNR. The contours of the classificatitorrpance for each
method as a function of the SNR of the first-order and the second-ardgranents are shown. Itis
clear that BDCA performance is only affected by the noise in the linear terite &SP and MLR
performance only changes as a function of the second-order comfso8&8IR. SOBDA however,
uses both first and second-order terms, hence performs well in datevfsere at least one of the
components has reasonable SNR. This finding confirms that SOBDArperfeell in a broader
range of SNRs than the other three competitive methods. The third row ik she difference in
classification performance between SOBDA vs (BDCA,CSP,MLR).

674



SECOND-ORDERBILINEAR DISCRIMINANT ANALYSIS

BDCA CcSP
1
-15 -15
a a 0.9
£ ~20 € -20
x o 0.8
5 -25 5 -25 07
o o
& -30 & -30 0.6
-35 . -35
-20 -15 -10 -20 -15 -10
ERD SNR in dB ERD SNR in dB
MLR SOBDA
m o
=} ©
£ £
o o
zZ =z
%] %]
o o
o o
L w
-20 -15 -10 ' -20 -15 -10
ERD SNR in dB ERD SNR in dB
SOBDA vs BDCA SOBDA vs CSP SOBDA vs MLR
-15 ' -15 ” -15
[aa] [aa] [aa]
el © ©
£ 20 : £ 20 £
< < <
5 -25 5 -25 5
o o o
-35 ‘ -35
-20 -15 -10 -20 -15 -10 -20 -15
ERD SNR in dB ERD SNR in dB ERD SNR in dB

Figure 1: Performance results on simulated d8tcond and third rowProbability of correct clas-
sification (Pc) as a function of the component’s SNR. SOBDA equi-padarce contours
span larger area in the SNR space than any of the other three algorithimstow: Dif-
ference in Pc performance between SOBDA and each of the three methadsnction
of components SNR.

As a decomposition method, SOBDA extracts spatial, temporal and frequemgonents. The
advantage of simulated data is that we can now compare the extracted infortoagimund truth.
The component recovered for one of the data sets?22dB and—15dB is shown in figure 2. The
first row shows the extracted temporal comporigrind the frequency componef We can see
that the method extracted a temporal component with a peak at 300ms whictiky éike signal
used in the simulation data design. Similarly, the frequency band extracted alfigher amplitude
in the range of 8Hz-30Hz which is the band used to generate the oscillatogyonent. The spatial
components extracted and the corresponding dipole used in the modedtggnare shown in rows
two and three in the figure. It is clear that the topography of the extractegh@nents is similar
for the first and second-order components. The last column of thef@gpotures the second-order
oscillatory component and the dipole of the rank one noise. Visual inspeaiiimvs one to give
neurological interpretations to the extracted components. Further, thitssresn be used as input to

2. d the vector of diagonal elements of matbx such thaB = FHDF
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Figure 2: Extracted components on simulated data set with first-order SNR2dB and second-
order SNR at-15dB. Top row: Extracted temporal weight of linear term (left) and
frequency weights of quadratic term (righ§enter row: Extracted spatial weight8ot-
tom row: Distribution of electric potentials corresponding to the three dipoles uséedur
stimulus generation.

a source localization algorithm, or as a guide to reduce the number of elesiroa brain computer
interface.

3.2.1 (ENERICINITIALIZATION OF FREQUENCY COMPONENT

In the evaluation presented above, we initialized the m#&rtw encode a band-pass in the range
of 8Hz - 30Hz as it was the case for CSP and MLR. In this section we dermatmshe ability of
the proposed SOBDA in cases where no initialization information is availablecifgmlly, we
evaluated the SOBDA algorithm on a simulated data set using the procesbei@sbove, but this
time we initialize matrixB to a high-pass filter with cut of frequency at 1 Hz. High pass filtering
is a standard preprocessing steps in EEG that removes the DC powee Figilnows the temporal
and frequency component obtained from SOBDA. As it is evident froenfitjure, the resulting
frequency component has higher weights for frequencies in the Hdn@8Hz, which is the band
used to generate the power component in the simulated data. Thus thegaropethod is able
optimize the frequency band even in cases where we use a generic initializbtie matrixB.
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Figure 3: Discriminant coefficients on simulated data set with first-order 8NR22dB and
second-order SNR at15dB. The Fourier coefficients were initialized to a high-pass
filter with cut off frequency at 1 Hz eft figure: Extracted temporal weight of linear
termRight figure:Magnitude of the Fourier coefficients B, such thaB = FHDF.

3.3 Human Subject EEG

To evaluate the performance of the proposed method on real data vepfitietd the algorithm to an
EEG data set that was made available through The BCI Competition 2003 @Biamk al., 2004,
Data Set IV). EEG was recorded on 28 channels for a single subjdorméng “self-paced key
typing”, that is, pressing with the index and little fingers corresponding kew self-chosen order
and timing. Key-presses occurred at an average speed of 1 kepgmrds Trial matrices were
extracted by epoching the data starting 630ms before each key-prdéetal Af 416 epochs were
recorded, each of length 500ms. For the competition, the first 316 epaaiesused for classifier
training, while the remaining 100 epochs were used as a test set. Datacoatectat 1000Hz with
a pass-band between 0.05 and 200Hz, then down sampled to 100Hz samatging

For this experiment, the matr was fixed to a Toeplitz structure that encodes a 10Hz-33Hz
bandpass filter and only the parameteid/, A andwp were trained. The number of columns of
U andV were set toR =1 and the number of columns féx was set toK = 2. The selection
of these parameters is motivated by the task at hand. Specifically, we &eddor one ERP
components associated with theadinessotential that is, the slow increase in amplitude before
an actual hand movement. In the case of the second-order term involenmathmeteA we set
K = 2 because we are interested in finding the modulation of oscillatory activibciassd with
the different movements of the movements of the hands. Hands and fingerspaesented in
somato-sensory cortex covering different areas and will hence ntedadtvity in distinct spatial
profiles. In order to detect the power difference of these two compgsmenset/\ = [1,0;0, —1],
in agreement with the original approach of Wolpaw et al. (2002).

The temporal filter was selected based on prior knowledge of the relegguency band. This
demonstrates the flexibility of our approach to either incorporate prior letume when available
or extract it from data otherwise. Regularization parameters wherechoa a five fold-cross
validation procedure as described in Section 2.8.

Benchmark performance was measured on the test set which had notdezeduring either
training or cross-validation. The number of misclassified trials in the testaetl®& which places
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Figure 4: Results on human EEG for BGbp row: Cross-validation performance shown as ROC
curve with area under the curve of 0.96 for the benchmark data seta(teft).93 for the
independent test set (right). There were a total of 13 errors oreartaga, which is less
than any of the results previously reporteBlottom row: Scatter plot of the first-order
term vs second-order term of the model, on the training and testing seefbetithmark
data set (+' left key, and '0’ right key). It is clear that the two types of featuresitain
independent information that can help improve the classification perfoenanc

our method in a new first place ranking, based on the results of the compéBtamkertz et al.,
2004). The receiver-operator characteristic curve (ROC) fas=kalidation and for the indepen-
dent test set are shown in Figure 4. The Figure also shows the contnilbfitire linear and quadratic
terms for every trial for the two types of key-presses.

To further validate our method we performed our own EEG recordinga@gskibjects now to
respond with the left and right index fingers. We obtain five more data s#tdtve same number
of electrodes. For each data set and each algorithm we performege@iitioms of a five-fold
cross-validation procedure. Each repetition uses a different partigiaiithe data. For the cross-
validation evaluation of these data sets, we initialized (but did not fix) mRAtiixa Toeplitz structure
that encodes a 10Hz-33Hz bandpass filter and trained over all paratde¥e A, B andwp.® The
number of columns df) andV were set to 1, where two columns were usedXoiT his corresponds
to the parameter configurationBf=1,K =2 andT' =T.

3. We remind the reader that in the actual implementation we optimize the FoaeifficientsD instead of matrix8
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Figure 5: Estimate of the spread of the probability of correct identificatiom fmultiple cross-
validation repetitions. Lines show lower quartile, median, and upper quaaliles for
each of the methods on all data setssymbols represent outliers.

Figure 5 shows performance distribution across these bootstrap regetisorg a standard
boxplot. The mean performance and standard deviation of each datadssgyarithm are summa-
rized in table 1. The reduction in the overall classification error is from-28% to 19%. In the
mean, SOBDA outperforms competitive methods in five out of the six data deile, achieving a
comparable performance on data set 2. The performance optained WBiDASS comparable to
performance gains that may be obtained by combining existing first anddeoder methods (e.g.,
CSP and BDCA—data not shown).

Figure 6 shows the extracted components for 3 of the 6 data sets. We nibbe #fiathree
cases the extracted components follow the general shape of the preanotadiness potential
(a.k.a. Bereitschafts potential) which known to precede a voluntary museiemamt. In addition,
for two of the data sets, the frequency weightings suggest that alplibaudimity also provides
discriminant information for this task. This finding is consistent with the chaigtheu rhythm—
that is, alpha-band activity localized over the motor cortex and associdtedwtor planning and
execution. This demonstrates the ability of our method to learn first and decdar features
that are consistent with, and can be linked to existing knowledge of thelyimdeneuronal signal
generators.
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Experiment BDCA CSP MLR SOBDA SMLR
1 0.84+0.011| 0.8+£0.017 | 0.82+0.011| 0.88+0.013 | 0.78+ 0.0089
2 0.69+ 0.037| 0.84+0.017 | 0.77+£0.028| 0.83+0.021 | 0.82+ 0.012
3 0.63+0.018 | 0.62+ 0.016| 0.55+0.02 | 0.63+£0.017 | 0.62+ 0.015
4 0.72£0.021| 0.78+£ 0.015| 0.77£ 0.015| 0.794+0.018 | 0.76+ 0.021
5 0.64+0.018| 0.7£0.022 | 0.7+ 0.011 | 0.78£0.013 | 0.73+ 0.0097
6 0.93+0.01 | 0.7£0.016 | 0.72+0.01 | 0.94+0.0089 | 0.68+ 0.0056
Mean 0.7412 0.7388 0.7213 0.8068 0.7316

Table 1: Probability of correct identification for the six EEG data sets oldaliyeeach of the
four methods. The last row indicates the percentage of decrease indb#ictdion error
achieved by SOBDA compared to each one of the methfidange indicates one standard
deviation for results of multiple cross-validation repetitions.

4. Rank-Selection

In our results, we selected the rank for the paramdieendV to be one (i.e.R = 1) and the
rank for the parametek to be two (i.e.K = 2). The selection of these parameters was motivated
in Section 3.3. Specifically, in the current experimental paradigm, we akintpdor one ERP
components associated with treadinesgotential, that is, the slow increase in amplitude before
an actual hand movement. The search for a single component sugdtstsRe- 1, one spatio-
temporal component. In the case of the second-order term involving taenpterA we set the

K = 2 because we are interested in finding two components corresponding toahdffisvent
spatial profiles of the two classes. To validate our selection for thesenptees, we preformed
repeated cross-validation evaluation of our algorithm for differenfigorations of the parameters
RandK. The parameteR was tested for valuegl, 2, 3,4} while parameteK was tested fof2,4}.

The results of this evaluation are summarized in Figure 7. The Figure 7.a&thewnean cross-
validation performance of the SOBDA algorithm across all real-EEG d#gdaeall configurations

of the paramete® andK. It is evident from this figure that configuratiéth= 1, K = 2 corresponds

to the best selection for these parameters on average for these datdhsetsigure 7.b shows
the cross-validation performance of the SOBDA algorithm for each datseparately and for all
configuration of the parameteRsandK. The cross-validation procedure can be used to determine
or validate the configuration of paramet&sndK in cases were no prior knowledge is available
about the signal of interest.

5. Conclusion

In this paper we presented a new method called Second-Order Bilineainiisant Analysis

(SOBDA) for analyzing EEG signals on a single-trial basis. The method twsbdinear and
guadratic features thus encompassing and extending a number of exiEharalysis methods.
We evaluated the SOBDA algorithm in both simulated and real human EEG datseethow a re-
duction in the classification error on human EEG when comparing our methoel $tetie-of-the-art.
The results on simulated data characterize the operational range ofith@$ms in terms of SNR
and shows that the proposed algorithm operates well where other médiodise parametrization
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Figure 6: Extracted components in EEG for data sets 6, 4, ahdf8. Temporal weights of linear
component (first column) and and frequency weights of quadratic coempgsecond
column). Right: Spatial weights of linear component (third column) and two spatial
weights for second-order spatial components (fourth and fifth column).
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Figure 7: Cross-validation performance of SOBDA on the six real-EB& skts used in the evalu-
ation, at various configuration of the parametemndK. (a) The mean cross-validation
performance across data sets at various configuration of the paraRateiK.(b) Cross-
validation performance for each of the data sets at various configurdtiloa parameters
RandK.
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of the discriminant criterion is intuitive, allowing one to incorporate prior klenlge as well as to
derive spatial, temporal, and spectral information about the underlyunglogical activity.

6. Derivations

In this section we derive the analytic gradient formulas of the negativéKeljrood function de-
fined in (2). In general the gradient with respect to any of the variatalese expressed as:

L(e) _ N 6Iog(1+e*ynf(xn;e))
® 4 20
_ 1 0{1+e nfXnb)}
S z 1—|—e*Ynf(X;9) 00

N X0 5f(X0)
- Z TrenfX® 99

Now one has to take the specific derivatives with respect to each of tiadhess in0 is:
The gradient with respect g, therth column ofU.

0{f (Xn;0) + w0} C6{TraceLJTXnV}

ou, ou,
_ a{zr, LU Xpve )
ouy,
- CXnVr .

The gradient with respect tg, therth column ofV is:

0{f (Xn;0) + w0} Ca{TraceUTXnV}

aVr aVI’
_ a{z,, LU Xnve}
ov;

The gradient with respect &, therth column ofA is:

8{f (Xn; 0) + w0} d{TraceA (X,B)(X,B)TA}

0a, = -0 0a
A{SK_ Aval (XnB)(XnB) &y
- (-0 {3 aT(aar )(XnB) &}

= 2(1-C)A(XnB)(XnB) &
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The gradient with respect tg, therth column ofB is:

0{f(Xn;0) + w0} 0{TraceAAT (X,B)(XnB)TA}
oby oby
d{TraceB" X ANATX,B}
aby
{5 _1bIXTATAATX by}
aby
= 2(1-C)(X,ANATX\ )by .
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