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1.1 Abstract

We describe our work using linear discrimination of multi-channel electroencephalography
for single-trial detection of neural signatures of visual recognition events. We demonstrate
the approach as a methodology for relating neural variability to response variability, de-
scribing studies for response accuracy and response latency during visual target detection.
We then show how the approach can be utilized to construct a novel type of brain-computer
interface, which we term cortically-coupled computer vision. In this application, a large
database of images is triaged using the detected neural signatures. We show how ‘cortical-
triaging’ improves image search over a strictly behavioralresponse.

1.2 Introduction

Running in the park with your head phones on, listening to your favorite tune and concen-
trating on your stride, you look up and see a face that you immediately recognize as a high
school friend. She is wearing a hat, glasses, and has aged 15 years since you last saw her.
You and she are running in opposite directions so you only seeher for a fleeting moment,
yet you are sure it was her. Your visual system has just effortlessly accomplished a feat that
has thus far baffled the best computer vision systems. Such ability for rapid processing of
visual information is even more impressive in light of the fact that neurons are relatively
slow processing elements compared to digital computers, where individual transistors can
switch a million times faster than a neuron can spike.

Non-invasive neuroimaging has provided a means to peer intothe brain during rapid
visual object recognition. In particular, analysis of trial-averaged event-related potentials
(ERPs) in electroencephalography (EEG), has enabled one toassess the speed of visual
recognition and discrimination in terms of the timing of theunderlying neural processes
[33]. More recent work has used single-trial analysis of EEGto characterize the neural
activity directly correlated with behavioral variabilityduring tasks involving rapid visual
discrimination [7, 28]. These results suggest that components extracted from the EEG can
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capture the neural correlates of the visual recognition anddecision making processing on
a trial-by-trial basis.

In this paper we consider how such EEG components might be utilized for constructing a
brain computer interface (BCI) system for rapidly assessing streams of natural images. Tra-
ditionally, non-invasive BCI systems have been based on oneof the following paradigms;
1) having a subject consciously modulate brain rhythms (e.g. [26, 36, 6]), 2) having a sub-
ject consciously generate a motor plan and/or visual imagery [27, 35], 3) directly modulate
the subject’s cortical activity by the stimulus frequency (e.g. steady state visually evoked
potentials SSVEP) [16, 4] or 4) exploit specific ERPs such as the novelty/oddball P300
[15]. The approach and system we describe is most similar to the later, though our fo-
cus is on single-trial detection of ERPs and their relationship to visual discrimination and
recognition.

We begin this paper by providing a brief review of the linear discrimination methods
we employ to extract task specific components in the EEG. We then show how such com-
ponents are in fact directly coupled with the visual discrimination and decision making
processes for stimuli involving rapid sequences of naturalimages. For example, we show
that we can construct neurometric functions from the EEG components which are indistin-
guishable from the corresponding psychometric functions for a rapid serial visual presen-
tation (RSVP) task. We also investigate the neural correlates of response time variability
responsible for such perceptual decision making processes. We then describe how we use
this approach to develop a BCI system high-throughput imagery triage. We term our system
cortically-coupled computer visionsince we leverage the robust recognition capabilities of
the human visual system (e.g. invariance to pose, lighting,scale, etc), and use a noninva-
sive cortical interface to intercept signatures of recognition events–i.e. the visual processor
performs perception and recognition and the EEG interface detects the result (decision) of
that processing.

1.3 Linear methods for single-trial analysis

The goal of a BCI system is to detect neuronal activity associated with perceptual and/or
cognitive events. Detecting such events implies detectingwhen an event occurred and
identifying its significance. The task is greatly simplifiedif the timing information is
provided by an external observable event. Thus the conventional paradigm of the evoked
response considers the neuronal activity following the presentation of a stimulus. In our
work we have adopted this paradigm by analyzing the EEG activity of multiple electrodes
following presentation of an image. For simplicity we aim toidentify only one type of
event, visual target recognition, and differentiate this from other visual processing. The
task is therefore a binary classification based on the temporal and spatial profile of the
potentials evoked following stimulus presentation. In every trial an image is presented and
in some trials the image contains a target object which we assume is recognized by the
subject. The EEG activity following each stimulus is recorded asD × T values, where
D is the number of channels andT is the number of samples. Typically we record data
at 1000 Hz in up to 64 channels. With a time window of half a second following the
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presentation of the stimulus, one would have acquired 32000samples. This is a rather large
feature vector considering that typically there are fewer thanN = 100 exemplars (trials)
to train a classifier. In addition, EEG signals have a very lowsignal-to-noise ratio (SNR)
and brute-force classification of these 32000-dimensionalfeature vector will typically fail.

To obtain reasonable classification performance we exploitprior information on the
temporal characteristics of the signal and noise with the following steps: (1) Reduce the
trial-to-trial variability by filtering the signal to remove 60Hz interference and slow drifts
(slower than 0.5 Hz). This assumes that slow constant currents below 0.5 Hz carry no
information; (2) Reduce the dimensionality of the problem by stepping our classification
window everyL-th sample assuming that the signal of interest does not varymuch within
L samples; (3) Increase the number of exemplars by using theL redundant samples in
each classification window. This implies that the variationwithin L samples is considered
noise, i.e. forL = 50 the signal of interest is at 10Hz while faster signal variation are
considered noise. Steps (2) and (3) taken together will transform the original data for each
trial with TD dimensions intoL exemplars of onlyDT/L dimensions. As an example,
with L = 50 andN = 100 one will acquire 5000 training examples, which can be used
to train a classifier with a 640-dimensional feature vector.Admittedly this samples are not
independent, but they are useful as they capture the noise inthe data at least for frequencies
above 10Hz.

We have obtained good classification results with a simple linear classifier of these
DT/L-dimensional feature vectors. The classification method isdemonstrated in Fig-
ure 1.1 for the simple case of a single training window (L = T andD-dimensional feature
vector). Linear classification means that the feature vector x is projected onto an orien-
tation defined by vectorw such that the projection,y = wT x, optimally differentiates
between the two classes. This is a traditional problem in pattern recognition with various
solutions depending on the exact optimality criteria. In anoff-line processing mode we
use penalized logistic regression as it gives us the best generalization performance on this
data [25]. For well-separated classes this linear classification method is equivalent to lin-
ear support vectors. In an real-time processing mode we use Fisher linear discriminants as
the required means and covariances can easily be updated on-line as more trials become
available for training. For a discussion on the relative benefits of various linear classifica-
tion methods with EEG data see [23, 25]. Classification performance is measured with the
conventional receiver operating characteristic (ROC) curve [8], specifically the area under
the ROC curve (Az). We will report in all cases the cross-validated test-set performance
using a leave-one-out procedure where we leave out all samples belonging to one trial.

One can conceive of many other ways of classifying the spatio-temporal evoked re-
sponses including non-linear methods. In fact, many different algorithms have been pro-
posed, which exploit different prior assumptions on the signals [25, 18, 20, 3]. We are
partial towards linear methods for two reasons: (1) The linear combination of voltages
has an immediate interpretation as a current (tissue is primarily resistive with coupling
coefficients representing conductivity). The coefficientsthat couple this current with the
observed voltages are given for the linear model by,a =

〈

xT y
〉

/
〈

y2
〉

, where the angular
brackets indicate the average over trials and samples. Specifically, coefficientsa describe
the coupling (and correlation) of the discriminating componenty with the sensor activity
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Figure 1.1: Linear discrimination in EEG: (a) TheD-dimensional EEG activity,X, is
projected onto a single dimensiony. (X is a matrix of channels by samples, andy is a
row vector containing multiple samples). The row vectors,y, containing the samples that
follow each target stimulus presentation, can be arranged for multiple trials as a matrix.
This matrix (ytarget - mean(ynon−target)) is displayed here as an image with white and
black representing the largest and smallest values respectively. The projection vectorw is
chosen so that the valuesy within the training window differ maximally between target
and non-target trials. (b) The sensor projectionsa are computed for the samples within the
training window. (In this equation the inner product computes the average over trials and
samples. Therefore matrixX and vectory extend here over the training samples from all
trials.) The resulting values ofa are displayed at the corresponding scalp locations as a
color-map with white and black representing the largest andsmallest values respectively.
When the intensityy averaged within the specified time window is used as classification
criteria we achieve on this data anAz-value of 0.84. The probability of obtaining anAz of
this magnitude by chance is less than 1% (p < 0.01).

x. Botha andx are D-dimensional vectors (row and column respectively). Strong coupling
indicates low attenuation of the component and can be visualized as intensity maps that we
call the ‘sensor projections’ [25], (2) Linear methods are easy to implement and are fast,
permitting real-time operation. The disadvantage of our method is that it does not capture
synchronized activity above 10Hz, and neither does it capture activity that is not at a fixed
distance in time from the stimulus, instead only phase-locked activity is detected.

In the remaining sections we give several examples of how this linear discrimination
method is used to identify the neural correlates of decisionmaking and response time
variability, as well as how it can be integrated into a BCI system for image triage.
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1.4 EEG correlates of perceptual decision making

Identifying neural activity directly responsible for perceptual decision making is a major
challenge for non-invasive BCI systems. A number of investigators have studied the neural
correlates of decision making in awake behaving animals, inparticular primates, where
single and multi-unit recordings have been analyzed using signal detection theory [8] and
subsequently correlated with the animal’s observed behavior [2, 1, 24]. These approaches
consist mainly of direct comparisons between psychometricand neurometric functions
since this enables one to relate the variability of the neural activity to the variability
observed in the behavioral response. The technique has beenapplied in a variety of
perceptual decision making paradigms, including discrimination of visual objects such
as faces [17]. The approach, though powerful, has been limited to animal studies which
use invasive recordings of single-trial neural activities. Yet to be demonstrated however is
whether decision making could be studied in a similar fashion, non-invasively, in humans.

We use single-trial linear discrimination analysis, as outlined in the previous section, to
identify the cortical correlates of decision making duringrapid discrimination of images.
Psychophysical performance is measured for several subjects during an RSVP task, where
a series of target (faces) and non-target (cars) trials are presented in rapid succession
(Fig. 1.2a), while simultaneously recording neuronal activity from a 64-channel EEG
electrode array. Stimulus evidence is varied by manipulating the phase coherence [5] of
the images (Fig. 1.2b). Within a block of trials, face and carimages over a range of phase
coherences are presented in random order. We use a set of 12 face (Max Planck Institute
face database) and 12 car grayscale images (image size 512 x 512 pixels, 8-bits/pixel).
Both image types contained equal numbers of frontal and sideviews (up to 45 degrees).
All images are equated for spatial frequency, luminance andcontrast. Subjects are required
to discriminate the type of image (face or car) and report their decision by pressing a button.

EEG data is acquired simultaneously in an electrostatically shielded room (ETS-
Lindgren, Glendale Heights, IL) using a Sensorium EPA-6 Electrophysiological Amplifier
(Charlotte, VT) from 60 Ag/AgCl scalp electrodes and from three periocular electrodes
placed below the left eye and at the left and right outer canthi. All channels are referenced
to the left mastoid with input impedance< 15kΩ and chin ground. Data are sampled
at 1000 Hz with an analog pass band of 0.01–300 Hz using 12 dB/octave high pass and
eighth-order elliptic low pass filters. Subsequently, a software based 0.5 Hz high pass filter
is used to remove DC drifts and 60 and 120 Hz (harmonic) notch filters are applied to
minimize line noise artifacts. These filters are designed tobe linear-phase to minimize
delay distortions. In all our experiments we record also EOGsignals and remove motion
and blink artifacts using linear methods as described in [25]. Motor response and stimulus
events recorded on separate channels are delayed to match latencies introduced by digitally
filtering the EEG.

Using a linear discriminator, we identify EEG components that maximally discriminate
between the two experimental conditions. At each phase coherence level, and between the
stimulus onset and the earliest reaction time, we identify two time windows which gave
the most discriminating components. For this paradigm an early (≈ 170 ms following
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stimulus) and a late component (> 300 ms following stimulus) can be identified. In
order to be able to directly compare the neuronal performance at these two times, to the
psychophysical sensitivity as captured by the psychometric functions [8], we construct
neurometric functions by plotting the area under the ROC curves (Az values) against the
corresponding phase coherence levels. A linear discriminator is trained by integrating
data across both time windows (2D-dimensional feature vector). With this approach,
we generally observe for the discriminator improved performance (and hence higherAz

values) compared to when training is performed on the individual components in isolation.
Figure 1.3 shows a comparison of the psychometric and neurometric functions for one
subjects in the dataset. To demonstrate that the EEG-derived neurometric functions can
account for psychophysical performance, a likelihood-ratio test is used [11] which shows
that for all the subjects a single function can fit the behavioral and neuronal data sets as
well as the two separate functions.

For both the early (the well-known N170 [31, 29, 12]) and lateface selective compo-
nents, at each phase coherence level, we construct discriminant component maps to help
us visualize the temporal evolution of the discriminating activity across trials. Data is an-
alyzed for both stimulus and response-locked conditions, showing that both face selective
components appear to be more correlated with the onset of visual stimulation rather than
the response as shown in Figure 1.4 for one subject. In addition we construct scalp maps
of these discriminating components. The spatial distribution of activity seems to indicate
signaling between occipito-parietal and centro-frontal networks, consistent with several
ERP/MEG and functional neuroimaging studies [9, 10, 19, 31,34]. TheAz values which
describe the discriminator’s performance at each phase coherence level are also shown. For
the subject shown in Figure 1.4, the discriminant activity is statistically significant down
to a 30% phase coherence for both the early and late components as assessed by a boot-
strapping technique. Specifically, we compute a significance level for Az by performing
the leave-one-out test after randomizing the truth labels of our face and car trials. We re-
peat this randomization process 100 times to produce an Az randomization distribution and
compute the Az leading to a significance level ofp < 0.01.

Our results demonstrate that neural correlates of perceptual decision making can be
identified using high-spatial density EEG and that the corresponding component activities
are temporally distributed. Clearly important to the identification of these neural correlates
is the spatial, and to a lesser extent the temporal integration of the EEG component
activities. This approach is complementary to approaches using single and multi-unit
recordings since it sacrifices spatial and some temporal resolution (local field potentials
versus spike-trains) for a more spatially distributed viewof the neural activity during
decision making. The fact that we are able to identify neuralcorrelates of perceptual
decision making using relatively poor spatial resolution of EEG suggests that these neural
correlates represent strong activities of neural populations and not the activity of a small
number of neurons. As such, this approach can be proven especially useful in designing
non-invasive BCI systems that can reliably predict behavioral responses.

1.5 Identifying cortical processes leading to response time variability
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Figure 1.2: Schematic representation of the behavioral paradigm. (a) Within a block of
trials subjects are instructed to fixate on the center of the screen and are subsequently
presented, in random order, with a series of different face and car images at one of the six
phase coherence levels shown in (b). Each image is presentedfor 30 ms followed by an
inter-stimulus-interval lasting between 1500-2000 ms during which subjects are required
to discriminate among the two types of images and respond by pressing a button. A block
of trials is completed once all face and car images at all six phase coherence levels are
presented. (b) A sample face image at 6 different phase coherence levels (20, 25, 30, 35,
40, 45%).
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Figure 1.3: Comparison of behavioral and neuronal performance. Psychometric (solid
gray) and neurometric (solid black) functions for one subject. The abscissas represent
the percentage of phase coherence of our stimuli and the ordinate indicates the subject’s
performance as proportion correct. We fit both data with separate Weibull functions [30].
The psychophysical and neuronal data are statistically indistinguishable as assessed by a
likelihood ratio test after we fit the best single Weibull function jointly to the two data
sets. Thep-value in the bottom right corner represents the output of this test. Ap-value
greater than 0.05 indicates that a single function fits the two data sets as well as the two
separate functions. The dotted gray lines connect theAz values computed for each of the
two training windows separately (earlier window, light gray circles; later window, dark
gray squares).

Significant variability in response time is observed acrosstrials in many visual discrimina-
tion and recognition tasks. A variety of factors may accountfor response time variability
ranging from the difficulty in discriminating an object on any given trial, trial-by-trial vari-
ability of the subject’s engagement in the task, or intrinsic variability of neural processing.
Identifying neural activity that is correlated with response time variability may shed light
on the underlying cortical networks responsible for perceptual decision making processes
and the processing latencies that these networks may introduce for a given task.

We study visual target detection using an RSVP paradigm and use single-trial spatial
integration of high-density electroencephalography to identify the time course and cortical
origins leading to response time variability. The RSVP taskemulates natural saccadic scene
acquisition and requires high vigilance. The RSVP paradigmis illustrated in Figure 1.5.
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Figure 1.4: Discriminant component activity that shows thedifference between face vs.
car trials at each coherence level for one subject for (a) theearly (N170) and (b) the late
(≈ 300−400 ms) window. White represents positive and black negative activity. Each row
of these maps represents the output of the linear discriminator for a single trial, using a 60
ms training window (vertical white lines) with onset times specified at the top of each panel.
All trials are aligned to the onset of visual stimulation, asindicated by the vertical black line
at time 0 ms, and sorted by response time. The black and white sigmoidal curves represent
the subject’s response times for face and car trials respectively. The representation of the
topology of the discriminating activity is shown by the scalp plots to the right (dorsal view).
White represents positive correlation of the sensor readings to the extracted activity and
black negative correlation. TheAz values for each time window at each coherence level
are represented by the bar graphs. The significance of the difference activity is represented
by the dotted line (p = 0.01).

Activity associated with recognition has been identified with the RSVP paradigm as early
as 150ms after stimulus presentation [33]. More recent workargues that this activity
is associated with differences in low level features of the imagery rather than target
recognition [13]. The varied scale, pose and position of target objects (people) requires
subjects to recognize objects rather than low level features. During this task, participants
are presented with a continuous sequence of natural scenes.Participants completed four
blocks of 50 sequences each with a rest period lasting no morethan five minutes between
blocks. Each sequence consists of 50 images and have a 50% chance of containing one
target image with one or more people in a natural scene. Thesetarget images can only
appear within the middle 30 images of each 50 image sequence.The remaining natural
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Figure 1.5: Example Rapid Serial Visual Presentation (RSVP) trial. A fixation cross lasting
two seconds is followed by a sequence of 50 images. Each sequence has a 50% probability
of containing one target image. This target can only appear within the middle 30 images to
ensure that a one second image buffer precedes and follows the target.

scenes without a person are referred to as distractor images. Each image was presented for
100 ms. A fixation cross is displayed for 2 seconds between sequences. Participants are
instructed to press the left button of a generic 3-button mouse with their right index finger
while the fixation cross is present, and release the button assoon as they recognize a target
image.

Linear discrimination is used to determine spatial weighting coefficients that optimally
discriminate between EEG resulting from different RSVP task conditions (e.g. target vs.
distractor images) over specific temporal windows between stimulus and response. Integra-
tion across sensors enhances signal quality without loss oftemporal precision common to
trial averaging in ERP studies. The resulting discriminating components describe activity
specific to target recognition and subsequent response for individual trials.

Inter-trial variability is estimated by extracting features from discriminating compo-
nents. While robust extraction of component onset from individual trials is extremely dif-
ficult due to the stochastic nature of EEG, there is evidence of strong correlation between
ERP peak and onset times [32]. The peaks of spatially integrated discriminating compo-
nents were found by fitting a parametric function to the extracted componenty(t). For
simplicity we use a Gaussian profile that is parameterized byits heightβ, width σ, delay
µ, and baseline offsetα:

ŷ(t) = α +
β

σ
√

2π
e−

(t−µ)2

2σ2 . (1.1)

Response locking of discriminating components is determined by computing the linear
regression coefficients that predict the latency of the component activity as measured by
µ from the response times given byr as described by Equation 1.2. The slope from the
response time peak latency regression (θ) is defined to be the degree of response locking
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(percentage) for each component. This metric quantifies theextent to which the component
is correlated with the response across trials. It ranges from 0% for pure stimulus lock to
100% for pure response lock. A slopeθ = 100% indicates that slow responses show a
corresponding late activity, and fast responses show a corresponding early activity. A slope
of θ = 0% indicates that the timing of the activity does not change with response time and
is therefore stimulus locked.

µ̂j = θrj + b (1.2)

whereµ̂j andrj are the predicted peak latencies and response times for the j–th trial and
b is an offset term for the regression. This is shown for one subject in Figure 1.6.

The group results for the discriminating component activity across nine participants is
shown in Figure 1.7. Scalp projections of discriminating components were normalized
prior to averaging. Group averaged results show a shift of activity from frontal to parietal
regions over the course of 200 ms, which is consistent with previous studies of visual
oddball [22, 21]. Additional analysis and discussion is provided in [7].

In order to estimate the progression of response locking across all subjects, it is nec-
essary to account for response time variability between subjects. It is not appropriate to
average results since components are not temporally aligned across subjects. Rather, his-
tograms of response times were equalized to one subject (subject 2), and component peak
times were scaled accordingly. Scaled response times and component peak times were
concatenated across subjects. These registered group response times were then projected
onto the scaled component peak times to estimate the degree of response locking across
subjects. The group response lock increases from 28% at -200ms to 78% 50 ms after the
response.

The features of discriminating components are believed to reflect visual processing,
attention and decision stages. Modeling the peak latency, amplitude and duration of each
trial allows us to study the extent to which each stage varieswith response time. Consistent
with [14], Figure 1.7 indicates that significant processingdelays may be introduced by
early processing stages. Within 200 ms prior to response (≈ 250 ms following stimulus),
activity is already, on average, between 25-35% response locked. Due to our method, it is
not possible to determine whether this response locking is aresult of components at this
onset time or earlier onset times, since discriminating components were not significant for
earlier onset (peak) times. Thus we conclude it is possible that some of this early response
locking may be due to early visual processes (0-250 ms poststimulus). For our nine
subjects, correlation analysis reveals that discriminating component activity progressively
becomes more response locked with subsequent processing stages. Along with scalp
projections derived from discriminant analysis, the covariability of peak latency with
response time describes which cortical regions introduce processing delays, providing
insight into the nature of information flow through the brainduring visual discrimination.

1.6 EEG–based image triage
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Figure 1.6: Detailed temporal analysis of stimulus locked discriminating activity for sub-
ject 2. Each row in the left column shows the fit of discriminating activity to a Gaussian
profile described by Equation 1.1. On the top of each of these panels is the onset time of
the window used for discrimination. Right columns of each panel display the peak latency
(µ) (black dots) of each trial. The projection of response timesonto these peak latencies
is shown with a line black curve, with thick black curves representing response times. The
parameters for this projection indicate the degree of response locking for each component.
Purely stimulus and response locked conditions are indicated by 0% and 100% response
lock respectively. On top of these panels are reported the percent response lock and corre-
sponding error in the fit of the peak latencies across trials as well as the mean onset time
of the component. The standard deviation of peak latencies is 62 ms.
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dard error of the regression parameter associated with response locking %. For all subjects
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Finally, we describe an EEG system capable of using neural signatures detected during
RSVP to triage sequences of images, reordering them so that target images are placed near
the beginning of the sequence. We term our system “cortically–coupled computer vision”
since we leverage the robust recognition capabilities of the human visual system (e.g.
invariance to pose, lighting, scale, etc), and use a non-invasive cortical interface (e.g. EEG)
to intercept signatures of recognition events – the visual processor performs perception and
recognition and the EEG interface detects the result (e.g. decision) of that processing.

The RSVP triage task is similar to the task described in Figure 1.5 however following
the image sequence a series of self–paced feedback slides were presented indicating
the position of target images within the sequence before andafter EEG–based triage.
Participants completed two blocks of 50 sequences with a brief rest period lasting no more
than five minutes between blocks. During the second block, participants were instructed to
quickly press the left button of a generic 3-button mouse with their right index finger as
soon as they recognized target images. They were instructedto press the button twice, as
quickly as possible, if one target image immediately followed the other. Participants did
not respond with a button press during the first block.

In order to classify EEG on–line we use a Fisher linear discriminator to estimate a
spatial weighting vector which maximally discriminates between sensor array signals
evoked by target and non–target images. During each experimental condition (with and
without motor response), 5000 images were presented to the subject in sequences of 100
images. EEG evoked by the first 2500 images (50 targets, 2450 non-targets) was used
to train the classifier. During the experimental sessions, atraining window between 400-
500 ms following stimulus onset was used to extract trainingdata. Weights were updated
adaptively with each trial during the training period. Classification threshold is adjusted to
give optimum performance for the observed prevalence (class-prior). These weights and
threshold were fixed at the end of the training period and applied to the subsequent testing
dataset (images 2501-5000).

To boost triage performance, after the experiment multipleclassifiers with different
training window onsets were used. The training window onsets ranged from 0 to 900 ms
in steps of 50 ms. The duration of the training windows was 50 ms. Once these classifiers
were trained, the optimal weighting of these classifier outputs was found using logistic
regression to discriminate between target and non–target images.

Again, only EEG data evoked by the first 2500 images was used totrain the classifiers
and then find the inter–classifier weights. These weights were then applied to the testing
data set evoked by the second set of 2500 images (images 2501-5000).

Following the experiment, all image sequences were concatenated to create training
and testing sequences that each contain 2500 images (50 targets and 2450 non–targets).
These image sequences are re–sorted according to the outputof our classifier with multiple
training windows for EEG evoked by every image.

For comparison, sequences were triaged based on the button response. Images were
resorted according to:
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p(target|RT ) =

p(RT |target)p(target)

p(RT |target)p(target) + p(RT |non–target)p(non–target)

(1.3)

whereRT is the onset of a button response that occurs within one second of image onset.
p(target|RT ) = 0 when no response occurred within one second of image onset. The priors
p(target) = 0.02 andp(non–target) = 0.98. p(RT |target) is a Gaussian distribution with
a mean and variance determined from the response times from the training sequences.
Since more than one response is likely to follow a target image if the two target images
are presented within one second of each other, for training sequences response times were
assigned to target images based on the position of the targetimage within the sequence. In
other words if the target appeared first in the sequence and two button responses occurred
within one second of this target’s onset, the first response was assigned to that target image
and the second response was assigned to the second target image. For testing sequences,
if two or more responses occur within one second of the onset of any image, the response
with the greatestp(target|RT ) is assigned to the image.p(RT |non–target) is a mixture of
13 Gaussians, each with the same variance as that used forp(RT |target) and with means
assigned by shifting the mean fromp(RT |target) 600 ms in the past to 700 ms in the
future in increments of 100 ms, excluding the actual mean ofp(RT |target). This mixture
model contains a sufficient number of Gaussians so that the mixture is consistent within
the one second interval following image onset.p(RT |non–target) was designed to model
responses occurring within one second of the onset of a non–target image that is presented
within one second prior to or following a target image.

Triage results for one subject (subject 2) are shown in Figure 1.8. Figure 1.8(a) shows
number of targets as a function of the number of distractor images both before and after
triage based on button press and EEG. The area under the curvegenerated by plotting
fraction of targets as a function of the fraction of distractor images presented is used to
quantify triage performance. Triage performance for five subjects is listed in Table 1.1. This
area is 0.50 for all unsorted image sequences since target images are randomly distributed
throughout the sequences. Ideal triage performance results in an area of 1.00. There is
no significant difference in performance between button–based and EEG–based triage
(0.93±0.06, 0.92±0.03, p = 0.69, N = 5). Interestingly there is no significant difference
in performance between EEG–based triage for the motor and nomotor response conditions
(0.92± 0.03, 0.91± 0.02, p = 0.81, N = 5).

Figures 1.8(b)–1.8(f) are rasters showing the position of the target images (black
squares) and non–target images (white squares) in the concatenated image sequence. Based
on these rasters and the EEG and button–based triage performance for five subjects list in
Table 1.1, it is clear that both EEG and button–based triage systems are capable of a high
level of performance. The button–based triage performancebegins to fail, however, when
subjects do not consistently respond to target stimuli and response times exceed one sec-
ond. Subject 2, for instance correctly responded to only 74%of targets during the testing
session. In fact, this subject did not respond to 12 of 50 target images and the response
time for 1 target image exceeded one second. Excessively late responses cannot effectively
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Table 1.1: Triage performance and behavioral results
Subject EEG EEG Button EEG (motor) RT (training) RT (testing) % Correct % Correct

(no motor) (motor) and Button (ms) (ms) (training) (testing)

1 0.92 0.91 0.87 0.94 418± 133 413± 101 88 86

2 0.94 0.96 0.86 0.97 412± 64 450± 64 94 74

3 0.90 0.87 0.96 0.96 445± 79 423± 59 86 94

4 0.91 0.92 0.98 0.98 433± 74 445± 59 98 98

5 0.91 0.93 0.98 0.98 398± 86 402± 58 96 96

Group 0.91± 0.02 0.92± 0.03 0.93± 0.06 0.97± 0.02 421± 91 426± 71 92± 5 90± 10

be classified using our bayesian methods since it is not clearwhether these button presses
were in response to the target image or a subsequent non–target image. The EEG response
evoked by images with either no response or a late response is, however, still consistent
with EEG evoked by the target images with predictable response times. The EEG–based
triage system is therefore capable of detecting the recognition of these target images and
subsequently resorting these target images appropriately. For this reason we exploit the in-
formation provided by both EEG and button press using another perceptron to boost triage
performance. This approach is effective for increasing triage performance for subjects that
either did not respond or had a delayed motor response to a significant number of target
images (e.g. subjects 1 and 2).

1.7 Conclusion

Invasive and non-invasive electrophysiological recordings obtained during RSVP of natu-
ral image stimuli have shed light on the speed, variability and spatio-temporal dynamics
of visual processing. Recent advances in high-spatial density EEG, real-time signal pro-
cessing, machine learning and human-computer interface design have enabled these basic
neuroscience findings to be used in the development of systems which could support high-
throughput image triage. Further basic and applied neuroscience research by our group will
consider issues related to learning/priming/habituation, the effect of subject expertise, im-
age type and category and correlated spatio-temporal structure which is prevalent in video
sequences. We continue to develop ‘application level’ demonstrations which focus on in-
tercepting neural correlates of visual discrimination andrecognition events that effectively
by-pass the ‘slow and noisy’ motor response loop.
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Figure 1.8: Triage performance for subject 2. (a) Number of target images presented as a
function of the number of distractor images presented. An ideal triage system will place
50 (100%) of target images before all 2450 distractor images. The light gray curve shows
the original sequence. Button-based triage is shown by the dashed curve. The dash–dot
curve shows EEG-based triage during the experiment withoutmotor response. The dotted
curve shows EEG-based triage during the experiment with motor response and the thick
black curve shows triage based on EEG (motor) and the button response. (b–f) Rasters
showing the position of non–target (white squares) and target (black squares) within the
(b) original image sequence (c) EEG (no motor)–based triagesequence, (d) EEG (motor)–
based triage sequence (e) button–based triage sequence and(f) Combined EEG (motor) &
Button–based triage sequence. The first and last images in each sequence are shown by the
squares in the upper left and lower right of each raster respectively.
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