Predicting Learning Outcomes of Instructional Video Content using Neural Markers of Engagement

The City College of NewYork

Denise Robles^{1,2}; Simon Henin², PhD; Samantha Cohen^{2,3}; Lucas C. Parra², PhD ¹Macaulay Honors College in the City of New York; ²Department of Biomedical Engineering, City College of New York; ³The Graduate Center of the City University of New York

Introduction

- Recent electroencephalographic (EEG) studies have shown that the human brain responds similarly to the same stimulus regardless of a subject's personal background or bias^[1]
- Student engagement is correlated with academic success, but the mechanism by which this attentional focus translates into *improved performance* is unknown.
- Hypothesis: The level of inter-subject correlation (ISC) of EEG evoked by educational stimuli predicts the extent to which subjects acquire and retain stimulus-related knowledge.

- Figure 1. Video stills from four videos. Videos:
- 1. Who Invented the Internet? And Why?^[3] (top left)
- 2. Why Do We Have More Boys than Girls?^[4] (bottom right)
- 3. The Immune System Explained Bacteria Infection^[5] (top)
- 4. How do Modern Light Bulbs?^[6]
- 5. Why Are Stars Star-Shaped?^[7] (bottom left)

Methods and Materials

- EEG was recorded from 21 subjects while they watched five short educational video clips (Figure 1).
- Movie length lasted 4.53 +/- 2.29 minutes.
- Subjects' knowledge base was assessed before and after exposure to videos -- pre- and post- test (Figure 4).
- ISC components were derived by maximizing the correlation of each individual's neural responses to that of the rest of the group (Figure 2).
- The extent to which each individual correlated with their peers (measured via ISC) was used as a metric of their attentional engagement with the stimuli.

Figure 2. Overview of neural reliability measure. Neural response are recorded from N subjects during the presentation of a naturalistic stimulus. Each subject provides time courses $\mathbf{x}(t)$ recorded on D electrodes (D=64). Correlations across subjects in each of these electrodes $x_d(t)$ is small (r_d <0.01). The data is projected using projection vectors, \mathbf{v}_i , which maximize correlations, \mathbf{r}_i . In the first component projections, y_i , correlations are now larger. Inter-subject correlation (ISC) is measured as the sum of the correlation of the first 3 correlated components [1].

- to educational videos (Figure 4C).
- test performance (Figure 4).

subjects. These projections were obtained from correlated component analysis.

This research was supported by NIH MARC grant #5T34GM007639-34 Principal Investigator: Dr. Lucas Parra MARC Program Director: Dr. Jonathan Levitt

[1] Dmochowski JP, Sajda P, Dias J, Parra LC. Correlated Components of Ongoing EEG Point to Emotionally Laden Attention – A Possible Marker of Engagement? *Frontiers in Human* Neuroscience. 2012;6:112. [2] Lamborn, S., F. Newmann, and G. Wehlage. "The significance and sources of student engagement." Student engagement and achievement in American secondary schools (1992):

11-39.

[3] Dettmer, Philipp. "Who Invented the Internet? And Why?" YouTube. 10 Apr. 2014. Web. [4] Reich, Henry. "Why Do We Have More Boys Than Girls?" YouTube. 4 Sept. 2014. Web. [5] Dettmer, Philipp. "The Immune System Explained – Bacterial Infection" YouTube. 1 Jul.

2014. Web.

[6] Reich, Henry. "How Modern Light Bulbs Work" YouTube. 14 Feb. 2014. [7] Reich, Henry. "Why Are Stars Star-Shaped?" YouTube. 26 Aug. 2014.

Immune

Figure 4. A generalized linear mixed model related the ISC measured from individual subjects during the viewing of a particular video and their test performance. Each point is representative of an individual subject's ISC (N=20) and test scores for a particular video (N=5). All correlations are significant.

(A) The ISC related to individual pre-test score (p-value = 0.0006). This is the strongest relationship found, suggesting that subjects who knew less about a subject elicited a higher ISC while viewing the content. This indicates that poor pretest performers may have had an enhanced motivation to attend to the video.

The ISC related to individual post-test score (p-value = 0.05). The trend indicates a linear relationship, albeit the scattered range.

(C) The ISC related to delta score, which is the difference between an individual's pre-test and post-test scores (p-value = 0.0001). This score may measure the knowledge gained by watching the video.

Conclusion and Future Studies

The data illustrate that higher ISC values may be indicative of increased attentional engagement which is necessary for successful

• In the future, ISC could be used as a metric when designing and assessing online educational content and presentation style.

Acknowledgements

References