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Abstract
When ongoing sensory stimulation reaches the brain, the
activity that it generates reverberates across recurrent
brain networks. To distinguish the effect of the stimulus
from the recurrent brain dynamic we propose a vector-
autoregressive model with external input (VARX). This
model decomposes the traditional multivariate ”tempo-
ral response functions” into an immediate response to
the stimulus, and a recurrent dynamic within the brain.
The model naturally combines with the statistical formal-
ism of Granger to determine statistical significance of
each of these effects, including direction of effects be-
tween brain areas based on temporal precedence. We
demonstrate the approach with intracranial EEG (iEEG)
recordings of human subjects watching movies (22 pa-
tients). We find that the ”recurrent connectivity” during
the movies is nearly identical when subjects are at rest.
The recurrent dynamic enhances and prolongs the re-
sponses to sound, scene cuts and other external events.
If these external inputs are not accounted for, they in-
duce spurious connectivity between brain areas. The
recurrent connectivity differs from conventional “func-
tional connectivity” in that it is directed and asymmet-
ric. We find that sensory areas have mostly outward
connections, whereas higher-order areas have mostly in-
coming connections. The proposed VARX model com-
bines notions of functional connectivity with stimulus re-
sponse, potentially resolving conceptual problems that
arise when discussing temporal integration or prediction
whilst ignoring the recurrent dynamic of the brain. Code
for the proposed VARX Granger analysis is available here
https://github.com/lcparra/varx.

Introduction
The brain is highly interconnected between and within brain
areas. Strikingly, most models of brain activity in response
to an external natural stimuli do not take the recurrent archi-
tecture of brain networks into account. ”Encoding” models
often rely on simple input/output relationships such as gen-
eral linear models in fMRI (Friston et al., 1995), or temporal
response functions in EEG/MEG (Lalor & Foxe, 2010). In-
teractions between brain areas are commonly captured dur-
ing rest, often simply as instantaneous linear correlations,
referred to as ”functional connectivity”. (Greicius, Krasnow,
Reiss, & Menon, 2003). By taking temporal precedence into
account with linear predictive models the ”Granger-causality”

formalism establishes directed ”connectivity” (Haufe, Nikulin,
Müller, & Nolte, 2013; Sheikhattar et al., 2018; Soleimani et
al., 2022; Pellegrini, Delorme, Nikulin, & Haufe, 2023).

These concepts all naturally combine into a vector-
autoregressive model with external input (VARX), which is well
established in the field of linear systems (Ljung, 1999) and
econometrics (Hamilton, 2020). While linear systems are an
inadequate model of neuronal dynamics, they remain an im-
portant tool to understand neural representations because of
their conceptual simplicity. They are routinely used to link non-
linear features of continuous stimuli to neural responses such
as video to fMRI (Naselaris, Kay, Nishimoto, & Gallant, 2011)
or speech to EEG (Di Liberto, O’Sullivan, & Lalor, 2015). They
are used even to understand responses of deep-neural net-
work models (Li et al., 2023). Here we use this classic lin-
ear formalism to combine two canonical concepts which have
thus far largely remained separated, namely, that of stimulus
encoding and that of the internal brain dynamics.

Methods
The VARX model explains a time-varying vectorial signal y(t)
as the result of an autoregressive feedback driven by an inno-
vation process e(t) and an external input x(t) (Ljung, 1999):

y(t) = A∗y(t −1)+B∗x(t)+ e(t) (1)

A∗ and B∗ represent convolutions with appropriately sized fil-
ter matrices. They can be identified by minimizing the mean
squared innovation, σ2 = 1/T ∑

T
t=1 e(t)2. This is also the pre-

diction error, for predicting y(t) from the history y(t − 1) and
input x(t). In the Granger formalism this error is calculated
with all predictors included (full model, σ f ) or with individ-
ual channels in y(t − 1) or x(t) omitted (reduced model, σr)
(Granger, 1969). To quantify the ”effect” of the specific chan-
nel one can take the ratio of these errors (Geweke, 1982) lead-
ing to the test statistic D known as the ”deviance”. For large
T deviance follows the Chi-square distribution with cumulative
density F , from which one can compute the p-value:

D = T log(σ2
r/σ

2
f ) (2)

p = 1−F(D,T ) (3)

R2 = 1− exp(−D/T ) (4)

The ”generalized” R2 (Magee, 1990) serves as a measure of
effect size. A full description of the approach can be found in
(Parra, Silvan, Nentwich, Madsen, & Babadi, 2024).



Figure 1: VARX model: A captures recurrent connectivity be-
tween brain areas and B captures response to external inputs.
The overall brain response to the stimulus is given by the sys-
tem impulse response H = B/(1−A). e(t) captures the in-
novation in brain activity, and is assumed to be uncorrelated.

Results
We used this VARX Granger analysis on the intracranial
EEG data from humans (N=22) (Nentwich et al., 2023). We
first compared the effect size R for the recurrent connectiv-
ity A during movie watching (Fig. 2A) and eyes-open rest
(Fig. 2B). Surprisingly, the median difference in R is un-
changed (Fig. 2C&D, student t-test, t(21)=-1.38, p=0.18).

Figure 2: Recurrent connectivity A during movies does
not differ from rest. A) VARX model fit on 5 minutes of raw
iEEG data, with sound envelope, fixation onsets and film cuts
as input features. B) VARX model during resting fixation with
fixation onset as input feature. A) and B) show the coefficient
of determination R for each connection in A. C) Difference of
R between movies and rest for one subject; D) for all subjects.

If we ignore the stimulus features during movie watching,
by only fitting a VAR model, there is a significantly higher ratio
of recurrent connections (Fig. 3C, t(21)=24.53, p<.0001). In
other words, there are spurious recurrent connections due to
stimulus-induced correlation. However, the effect size signifi-
cantly decreases (Fig. 3D, t(21)=-9.48, p<.0001). In short, ac-
counting for the external input results in a model with stronger
and more sparse recurrent connections.

We also compared the total system response H, which in-
cludes the effect of recurrent connections A, with the imme-
diate effect B, which does not (Fig. 4). We see that the to-
tal response is much stronger and longer (Fig. 4D, t(21)=-
9.57, p< 0.0001). Incidentally, we find that our estimate of
H is nearly identical to the estimate of the ”multivariate tem-
poral response function” (Crosse, Di Liberto, Bednar, & Lalor,
2016) (mTRF, not shown). In other words, B and A are a valid
decomposition of the mTRF into immediate and recurrent ef-
fects.

Finally, we note the recurrent connections are potentially
asymmetric (Fig. 5A), indicating that preceding activity in one

Figure 3: Spurious recurrent connectivity in A is ac-
counted for when modeling effect of input with B. A) p-
values for each connection in A for VARX model on one sub-
ject; B) for VAR model; Both models are fit to the same data.
C) Difference of fraction of significant recurrent connections
between VAR and VARX for all subjects D) Median difference
in R between VAR and VARX over all electrodes and subjects.

Figure 4: Impulse response models. A) Immediate re-
sponses B are weaker and shorter than the overall system
response H. B). C) Response length (full-width-half-max of
the peak). D) Mean length of responses (22 patients).

brain area is a better predictor of activity in another, com-
pared to the reverse direction, i.e. the two directions of the
”Granger-causal” effect are not equally strong. We measured
this asymmetry for each channel (N=4408). Grouping chan-
nels by cortical parcellations we find that effects in sensory ar-
eas (transverse temporal and fusiform gyrus) are mostly out-
going toward other brain areas, while in higher-order areas
(precuneus, anterior cingulate, orbitofrontal cortex) effects are
mostly incoming (Fig. 5B).

Figure 5: Recurrent connectivity is directed from sensory
to higher order areas. A) Difference of R − R⊤ showing
asymmetric directed effects. B) Directionality for each channel
(mean along columns in R−R⊤) is significantly different from
zero in 9 out of 36 brain areas in the Desikan-Killiany atlas.
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