Dose-response of tDCS effects on motor learning and cortical excitability: a preregistered study

The City College of New York

Gavin Hsu¹, Zhenous Hadi Jafari¹, Abdelrahman Ahmed¹, Dylan Edwards^{3,4}, Leonardo G. Cohen², Lucas Parra¹

¹Department of Biomedical Engineering, The City College of New York, New York, NY, USA, ²National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA ³Moss Rehabilitation Research Institute, Elkins Park, PA, USA, ⁴School of Medical and Health Sciences, and Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia

Introduction

Transcranial direct current stimulation (tDCS) shows promising effects on motor behavior and corticospinal excitability, but results are mixed. Typical *in vivo* stimulation intensities (up to 2 mA) are much lower than those used *in vitro* to demonstrate modulation of synaptic plasticity. We hypothesized a monotonic effect of increasing tDCS intensity above 4 mA on cortical excitability and motor learning.

Methods

Results

tDCS applied concurrently with initial learning task (S1). Different sequences (S2, S3) were used as follow-ups.

In a parallel design, subjects received either 0, +4, or +6 mA tDCS (n=40 each). Sample size powered at 80%.

Results

Summary

This work is supported by the National Institutes of Health through grant R01NS130484. Preregistration available on OSF: https://osf.io/jyuev