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Abstract

Traditional analysis methods for single-trial classification of electro-
encephalography (EEG) focus on two types of paradigms: phase locked
methods, in which the amplitude of the signal is used as the feature for classifica-
tion, e.g. event related potentials; and second order methods, in which the feature
of interest is the power of the signal, e.g. event related (de)synchronization. The
procedure for deciding which paradigm to use isad hocand is typically driven
by knowledge of the underlying neurophysiology. Here we propose a principled
method, based on a bilinear model, in which the algorithm simultaneously learns
the best first and second order spatial and temporal featuresfor classification of
EEG. The method is demonstrated on simulated data as well as on EEG taken
from a benchmark data used to test classification algorithmsfor brain computer
interfaces.

1 Introduction

1.1 Utility of discriminant analysis in EEG

Brain computer interface (BCI) algorithms [1][2][3][4] aim to decode brain activity, on a single-
trial basis, in order to provide a direct control pathway between a user’s intentions and a computer.
Such an interface could provide “locked in patients” a more direct and natural control over a neu-
roprosthesis or other computer applications [2]. Further,by providing an additional communication
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channel for healthy individuals, BCI systems can be used to increase productivity and efficiency in
high-throughput tasks [5, 6].

Single-trial discriminant analysis has also been used as a research tool to study the neural correlates
of behavior. By extracting activity that differs maximallybetween two experimental conditions, the
typically low signal-noise ratio of EEG can be overcome. Theresulting discriminant components
can be used to identify the spatial origin and time course of stimulus/response specific activity,
while the improved SNR can be leveraged to correlate variability of neural activity across trials to
behavioral variability and behavioral performance [7, 5].In essence, discriminant analysis adds to
the existing set of multi-variate statistical tools commonly used in neuroscience research (ANOVA,
HotelingT 2, Wilks’ Λ test).

1.2 Linear and quadratic approaches

In EEG the signal-to-noise ratio of individual channels is low, often at -20dB or less. To overcome
this limitation, all analysis methods perform some form of averaging, either across repeated trials,
across time, or across electrodes. Traditional EEG analysis averages signals across many repeated
trials for individual electrodes. A conventional method isto average the measured potentials follow-
ing stimulus presentation, thereby canceling uncorrelated noise that is not reproducible from one
trial to the next. This averaged activity, called an event related potential (ERP), captures activity that
is time-locked to the stimulus presentation but cancels evoked oscillatory activity that is not locked
in phase to the timing of the stimulus. Alternatively, many studies compute the oscillatory activity
in specific frequency bands by filtering and squaring the signal prior to averaging. Thus, changes in
oscillatory activity are termed event related synchronization or desynchronization (ERS/ERD).

Surprisingly, discriminant analysis methods developed thus far by the machine learning community
have followed this dichotomy: First order methods in which the amplitude of the EEG signal is
considered to be the feature of interest in classification – corresponding to ERP – and second or-
der methods in which the power of the feature is considered tobe of importance for classification
– corresponding to ERS/ERD. First order methods include temporal filtering+ thresholding [2],
hierarchical linear classifiers [5] and bilinear discriminant analysis [8, 9]. Second order methods
include the logistic regression with a quadratic term [11] and the well known common spatial pat-
terns method (CSP) [10] and its variants: common spatio-spectral patterns (CSSP)[12], and common
sparse spectral spatial patterns (CSSSP)[13] .

Choosing what kind of features to use traditionally has beenanad hocprocess motivated by knowl-
edge of the underlying neurophysiology and task. From a machine-learning point of view, it seems
limiting to commita priori to only one type of feature. Instead it would be desirable forthe analysis
method to extract the relevant neurophysiological activity de novowith minimal prior expectations.
In this paper we present a new framework that combines both the first order features and the sec-
ond order features in the analysis of EEG. We use a bilinear formulation which can simultaneously
extract spatial linear components as well as temporal (filtered) features.

2 Second order bilinear discriminant analysis

2.1 Problem setting

Given a set of sample pointsD = {Xn, yn}
N
n=1,X ∈ R

D ×T , y ∈ {−1, 1} , whereXn corresponds
to the EEG signal ofD channels andT sample points andyn indicate the class that corresponds
to one of two conditions (e.g. right or left hand imaginary movement, stimulus versus control
conditions, etc.), the task is then to predict the class label y for an unobserved trialX.

2.2 Second order bilinear model

Define a function,

f(X; θ) = C Trace(UT
XV) + (1 − C)Trace(ΛA

T(XB)(XB)TA) (1)

whereθ = {U ∈ R
D ×R,V ∈ R

T ×R,A ∈ R
D ×K

B ∈ R
T ×T ′

} are the parameters of the model,
Λ ∈ diag({−1, 1}) a given diagonal matrix with elements{−1, 1} andC ∈ [0, 1]. We consider the
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following discriminative model; we model the log-odds ratio of the posterior class probability to be
the sum of a bilinear function with respect to the EEG signal amplitude and linear with respect to
the second order statistics of the EEG signal:

log
P (y = +1|X)

P (y = −1|X)
= f(X|θ) (2)

2.2.1 Interpretation of the model

The first term of the equation (1) can be interpreted as a spatio-temporal projection of the signal,
under the bilinear model, and captures the first order statistics of the signal. Specifically, the columns
ur of U representR linear projections in space (rows ofX). Similarly, each of theR columns of
vk in matrixV represent linear projections in time (columns ofX). By re-writing the term as:

Trace(UT
XV) = Trace(VU

T
X) = Trace(WT

X) (3)

where we definedW = UV
T, it is easy to see that the bilinear projection is a linear combination

of elements ofX with the rank − R constrained onW. This expression is linear inX and thus
captures directly the amplitude of the signal directly. In particular, the polarity of the signal (positive
evoked response versus negative evoked response) will contribute significantly to discrimination if
it is consistent across trials. This term, therefore, captures phase locked event related potentials in
the EEG signal.

The second term of equation (1), is a projection of the power of the filtered signal, which captures
the second order statistics of the signal. As before, each column of matrixA andB, represent
components that project the data in space and time respectively. Depending on the structure one
enforces in matrixB different interpretations of the model can be archived. In the general case
where no structure onB is assumed, the model captures a linear combination of the elements of a
rank − T ′ second order matrix approximation of the signalΣ = XB(XB)T. In the case where
Toeplitz structure is enforced onB, thenB defines a temporal filter on the signal and the model
captures the linear combination of the power of the second order matrix of the filtered signal. For
example ifB is fixed to a Toeplitz matrix with coefficients correspondingto a 8Hz-12Hz band pass
filter, then the second term is able to extract differences inthe alpha-band which is known to be
modulated during motor related tasks. Further, by learningB from the data, we may be able to
identify new frequency bands that have so far not been identified in novel experimental paradigms.
The spatial weightsA together with theTrace operation ensure that the power is measured, not
in individual electrodes, but in some component space that may reflect activity distributed across
several electrodes.

Finally, the scaling factorλ (which may seem superfluous given the available degrees of freedom)
is necessary once regularization terms are added to the log-likelihood function.

2.3 Logistic regression

We use a logistic Rregression (LR) formalism as it is particularly convenient when imposing ad-
ditional statistical properties on the matricesU,V,A,B such as smoothness or sparseness. In
addition, in our experience, LR performs well in strongly overlapping high-dimensional datasets
and is insensitive to outliers, the later being of particular concern when including quadratic features.

Under the logistic regression model (2) the class posteriorprobabilityP (y|X; θ) is modeled as

P (y|X; θ) =
1

1 + e−y(f(X;θ)+wo)
(4)

and the resulting log likelihood is given by

L(θ) = −
N

∑

n=1

log(1 + e−y(f(Xn;θ)+wo)) (5)

We minimize the negative log likelihood and add a log-prior on each of the columns ofU, V andA

and parameters ofB that act as a regularization term, which is written as:

argmin
U,V,A,B,wo



−L(θ) −
R

∑

r=1

(log p(ur) + log p(vr)) −
K

∑

k=1

log p(ak) −
T ′

∑

t=1

log(p(bt))



 (6)
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where the log-priors are given for each of the parameters aslog p(uk) = u
T
k K

(u)
uk

, log p(vk) = u
T
k K

(v)
uk, log p(ak) = a

T
k K

(a)
ak and log p(bk) = b

T
k K

(b)
bk.

K
(u) ∈ R

D×D,K(v) ∈ R
T×T ,K(a) ∈ R

D×D,K(b) ∈ R
T×T are kernel matrices that con-

trol the smoothness of the parameter space. Details on the regularization procedure can be found in
[8].

Analytic gradients of the log likelihood (5) with respect tothe various parameters are given
by:

∂L(θ)

∂ur

=

N
∑

n=1

ynπ(Xn)Xnvr (7)

∂L(θ)

∂vr

=

N
∑

n=1

ynπ(Xn)urXn (8)

∂L(θ)

∂ar

= 2

N
∑

n=1

ynπ(Xn)Λr,r(XnB)(XnB)Tar (9)

∂L(θ)

∂bt

= 2

N
∑

n=1

ynπ(Xn)XT
AΛA

T
Xbt (10)

where we define

π(Xn) = 1 − P (y|X) =
e−y(f(Xn;θ)+wo)

1 + e−y(f(Xn;θ)+wo)
(11)

whereui,vi,ai, andbi correspond to theith columns ofU,V,A,B respectively.

2.4 Fourier Basis for B

If matrix B is constrained to have a circular toepliz structure then it can be represented asB =
F

−1
DF, whereF−1 denotes the inverse Fourier matrix, andD is a diagonal complex-valued matrix

of Fourier coefficients. In such a case, we can re-write equations (9) and (10) as

∂L(θ)

∂ar

= 2

N
∑

n=1

ynπ(Xn)Λr,r(XnF
−1

D̂F
−T

X
T
n )ar (12)

∂L(θ)

∂di

= 2

N
∑

n=1

ynπ(Xn)(F−T
X

T
nAΛA

T
XnF

−1)i,idi (13)

(14)

whereD̂ = DD
T, and the parameters are now optimized with respect to Fourier coefficientsdi =

Di,i. An iterative minimization procedure can be used to solve the above minimization.

3 Results

3.1 Simulated data

In order to validate our method and its ability to capture both linear and second order features, we
generated simulated data that contained both types of features; namely ERP type of features and
ERS/ERD type of features. The simulated signals were generated with a signal to noise ratio of
−20dB which is a typical noise level for EEG. A total of 28 channels,500 ms long signals and at a
sampling frequency of 100Hz where generated, resulting in amatrix ofX of 28 by 50 elements, for
each trial. Data corresponding to a total of 1000 trials weregenerated; 500 trials contained only zero
mean Gaussian noise (representing baseline conditions), with the other 500 trials having the signal
of interest added to the noise (representing the stimulus condition): For channels 1-9 the signal was
composed of a 10Hz sinusoid with random phase in each of the nine channels, and across trials. The
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Figure 1: Spatial and temporal component extracted on simulated data for the linear term (top) and
quadratic term (bottom).

sinusoids were scaled to match the−20dB SNR. This simulates an ERS type feature. For channels
10-18, a peak represented by a half cycle sinusoid was added at approximately 400 ms, which T
simulates an ERP type feature.

The extracted components are shown in Figure 1. The linear componentU (in this case only a col-
umn vector) has non-zero coefficients for channels 10 to 18 only, showing that the method correctly
identified the ERP activity. Furthermore, the associated temporal componentV has a temporal
profile that matches the time course of the simulated evoked response. Similarly, the second order
componentsA have non-zero weights for only channels 1-9 showing that themethod also identified
the spatial distribution of the non-phase locked activity.The temporal filterB was trained in the
frequency domain and the resulting filter is shown here in thetime domain. It exhibits a dominant
10Hz component, which is indeed the frequency of the non-phase locked activity.

3.2 BCI competition dataset

To evaluate the performance of the proposed method on real data we applied the algorithm to an
EEG data set that was made available through The BCI Competition 2003 ([14], Data Set IV).
EEG was recorded on 28 channels for a single subject performing self-paced key typing, that is,
pressing the corresponding keys with the index and little fingers in a self-chosen order and timing
(i.e. self-paced). Key-presses occurred at an average speed of 1 key per second. Trial matrices
were extracted by epoching the data starting 630ms before each key-press. A total of 416 epochs
were recorded, each of length 500ms. For the competition, the first 316 epochs were to be used for
classifier training, while the remaining 100 epochs were to be used as a test set. Data were recorded
at 1000 Hz with a pass-band between 0.05 and 200 Hz, then downsampled to 100Hz sampling rate.

For this experiment, the matrixB was fixed to a Toeplitz structure that encodes a 10Hz-
33Hz bandpass filter and only the parametersU,V,A and w0 were trained. The number of
columns ofU andV were set to 1, where two columns were used forA. The temporal filter
was selected based on prior knowledge of the relevant frequency band. This demonstrates the
flexibility of our approach to either incorporate prior knowledge when available or extract it from

5



U component

0 100 200 300 400 500
−0.1

−0.05

0

0.05

0.1

time (m/s)

V component

First Column of A Second Column of A

Figure 2: Spatial and temporal component (top), and two spatial components for second order fea-
tures (bottom) learned on the benchmark dataset

data otherwise. Regularization parameters where chosen via a five fold cross validation procedure
(details can be found in [8]). The resulting components for this dataset are shown in Figure 2.

Benchmark performance was measured on the test set which hadnot been used during either train-
ing or cross validation. The number of misclassified trials in the test set was 13 which places
our method on a new first place given the results of the competition which can be found on-
line http://ida.first.fraunhofer.de/projects/bci/competition ii/results/index.html ([14]). Hence, our
method works as a classifier producing a state-of-the art result on a realistic data set. The receiver-
operator characteristic (ROC) curve for cross validation and for the independent testset are shown in
Figure 3. Figure 3.2 also shows the contribution of the linear and quadratic terms for every trial for
the two types of key-presses. The figure shows that the two terms provide independent information
and that in this case the optimal relative weighting factor isC ≈ 0.5.

4 Conclusion

In this paper we have presented a framework for uncovering spatial as well as temporal features in
EEG that combine the two predominant paradigms used in EEG analysis: event related potentials
and oscillatory power. These represent phase locked activity (where polarity of the activity matters),
and non-phase locked activity (where only the power of the signal is relevant). We used the proba-
bilistic formalism of logistic regression that readily incorporates prior probabilities to regularize the
increased number of parameters. We have evaluated the proposed method on both simulated data,
and a real BCI benchmark dataset, achieving state-of-the-art classification performance.

The proposed method provides a basis for various future directions. For example, different sets of
basis functions (other than a Fourier basis) can be enforcedon the temporal decomposition of the
data through the matrixB (e.g. wavelet basis). Further, the method can be easily generalized to
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Figure 3: ROC curve with area under the curve 0.96 for the cross validation on the benchmark dataset
(left). ROC curve with area under the curve 0.93, on the independent test set, for the benchmark
dataset. There were a total of 13 errors on unseen data, whichis less than any of the results previously
reported, placing this method in first place in the benchmarkranking.
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Figure 4: Scatter plot of the first order term vs second order term of the model, on the training and
testing set for the benchmark dataset (’+’ left key, and ’o’ right key). It is clear that the two types
of features contain independent information that can help improve the classification performance.
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multi-class problems by using a multinomial distribution on y. Finally, different regularizations (i.e
L1 norm,L2 norm) can be applied to the different types of parameters of the model.
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