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List-mode likelihood
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As photon-counting imaging systems become more complex, there is a trend toward measuring more attributes
of each individual event. In various imaging systems the attributes can include several position variables,
time variables, and energies. If more than about four attributes are measured for each event, it is not prac-
tical to record the data in an image matrix. Instead it is more efficient to use a simple list where every at-
tribute is stored for every event. It is the purpose of this paper to discuss the concept of likelihood for such
list-mode data. We present expressions for list-mode likelihood with an arbitrary number of attributes per
photon and for both preset counts and preset time. Maximization of this likelihood can lead to a practical
reconstruction algorithm with list-mode data, but that aspect is covered in a separate paper [IEEE Trans. Med.
Imaging (to be published)]. An expression for lesion detectability for list-mode data is also derived and com-
pared with the corresponding expression for conventional binned data. © 1997 Optical Society of America
[S0740-3232(97)00711-4]
1. INTRODUCTION
As photon-counting imaging systems become more com-
plex, there is a trend toward measuring more attributes
of each individual event. As an example, consider a pla-
nar nuclear-medicine imaging system in which the detec-
tor is a scintillation camera. This detector measures (or
estimates) two coordinates for each gamma ray. For
some kinds of scatter correction, the energy of the photon
is also estimated and recorded.1–3 With high photon en-
ergies and thick scintillation crystals, it can also be useful
to estimate the depth of interaction of the photon in the
crystal.4–6 All of these attributes are estimated from the
basic raw data, the photomultiplier signals, and in fact
these signals can themselves be regarded as measured at-
tributes of the scintillation event.7,8

Additional attributes arise in dynamic and tomogra-
phic imaging. One way of conducting a dynamic study in
nuclear medicine is to record the time of occurrence for
each event. Similarly, in single-photon emission com-
puted tomography (SPECT) systems, it is necessary, at a
minimum, to record the projection angle along with the
event coordinates.

The number of attributes increases further in a fully
three-dimensional positron emission tomography (PET)
system with two scintillation cameras. There the mini-
mal set of attributes consists of four coordinates (two for
each of the coincident photons) plus a rotation angle. In
addition, the attribute set might include estimates of the
energies of each photon, depth of interaction, or time-of-
flight difference. Similarly, in a Compton camera9 each
0740-3232/97/112914-10$10.00 ©
primary gamma-ray photon produces a Compton-
scattered photon, and the coordinates and energy of both
primary and secondary photon are measured. Thus the
attribute set consists of at least four measured coordi-
nates and two energies, and two more coordinates can be
measured with thick detectors.

The concept of measuring multiple attributes for each
event is not restricted to gamma rays; optical photon-
counting detectors with multiple outputs exist as well. A
position-sensitive photomultiplier, for example, can have
multiple anodes. If optical photons are incident on the
photocathode and well resolved temporally, so that dis-
tinct anode signals are obtained for each photon, then the
signal on each anode can be regarded as an attribute of a
single optical photon.

It is clear from these examples that a substantial num-
ber of attributes can be measured for each detected event.
One way of recording these data is to bin them into one
large data matrix, with one index for each attribute.
This method of data recording encounters difficulties as
the number of attributes increases, since the number of
elements in the data matrix can be huge. If N attributes
are measured to a precision of B bits each, there must be
2NB elements. If we assign one byte to each element, we
can acquire a maximum of 255 events in one bin. With
four attributes, we thus require approximately 224 bytes
(16 megabytes) of storage if each attribute is measured
with 6-bit precision or 232 bytes (4 gigabytes) for 8-bit pre-
cision. With more than four attributes it is usually out of
the question to assign one bin to each possible combina-
1997 Optical Society of America
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tion of measured attributes. Even if we could afford the
storage, it would be very inefficient to have many bins
with no recorded events.

If we attempted to reduce the storage requirements by
reducing the number of bits per attribute, there would be
a danger of information loss. As an extreme example,
photon energy in a scintillation camera is often reduced to
a single bit, set to one if the estimated energy lies in a
preset window. There is evidence that this results in a
loss of image quality as measured by lesion
detectability.8,10

Another form of data reduction is to use the initial set
of measured attributes to estimate values for some
smaller set of attributes. From the photomultiplier out-
puts in a scintillation camera, for example, we can esti-
mate the coordinates and energy of each photon, reducing
the number of attributes from the number of photomulti-
pliers to three. Though this practice is virtually univer-
sal, it is difficult to establish in general that it entails no
information loss.

In an important alternative mode of data storage,
called list mode, the measured attributes of each event
are simply stored in a list. If J events are observed and
N attributes are measured for each, then NJ memory lo-
cations are required. Each location can be one byte if
8-bit precision is adequate for each attribute. Whenever
2NB exceeds NJ, as it must for large N, list mode is more
efficient than binning. Moreover, since all measured at-
tributes are recorded for later processing, there is no loss
of information in the data-acquisition stage.

The goal of this paper is to present a comprehensive
treatment of the important concept of likelihood for list-
mode data. A familiar use of likelihood is in maximum-
likelihood parameter estimation or object reconstruction,
and the theory presented here provides the mathematical
basis for these applications. Another use of likelihood is
in signal detection and discrimination problems, where it
is known that the likelihood ratio is the optimum test sta-
tistic. Performance on these detection and discrimina-
tion tasks can then be used for the objective assessment of
image quality.

In Section 2 we consider three modes of representing
data from photon-counting imaging systems: conven-
tional binning, list mode, and an impulse-valued random
process. We present the relevant multivariate probabil-
ity distributions needed to describe the data in each
mode.

In Section 3 we use the statistical distributions devel-
oped in Section 2 to derive expressions for list-mode like-
lihood of the data given a particular object. We consider
separately the situations where data are acquired for a
preset time or a preset number of counts. We have used
one of these expressions to develop a maximum-likelihood
reconstruction algorithm, but the algorithm itself is de-
rived and discussed in a separate paper.11 Previous
work on maximum-likelihood reconstruction from list-
mode data has been published by Snyder12 and Snyder
and Politte,13 and it is a subject of current interest in
high-energy physics.

In Section 4 we derive expressions for the likelihood ra-
tio and detectability index for list-mode data when the
task is detection of a nonrandom object or discrimination
between two such objects. The results are compared
with previously published expressions for binned data.

2. STATISTICAL MODELS
A. Kinds of Data Sets
In any event-counting system, data can be collected either
for a given time or until a given number of events is
reached. In the nuclear-medicine literature, these two
methods are referred to as preset time and preset counts,
respectively, and we adopt that terminology here also.
The key distinction is that the total number of events J is
a random variable for preset time but a fixed number for
preset counts. Another possible data set could be ob-
tained by collecting a preset number of counts but also re-
cording the (random) time required to reach this number.
This option is rarely used in practice and is not treated
here.

Let rj , j 5 1...J, denote the N-dimensional attribute
vector for the jth event. The nth component (n
5 1...N) of the vector rj will be denoted xjn . In the
simple case of planar imaging, N 5 2 and xj1 and xj2 are
the Cartesian coordinates of a point in the image plane
representing event j. For the more interesting situation
where N . 2, the components xjn do not necessarily sig-
nify a physical position, but they can be regarded as Car-
tesian coordinates in an N-dimensional hyperspace which
we call attribute space.

There are three different ways of representing these
data. The simplest is the attribute list $rj , j 5 1...J%
plus J itself if data are collected for a preset time. The
other two modes, conventional binned data and an
impulse-valued random process, are easily constructed
from the list.

In a binned image, it is convenient to use a single index
m to denote the bin rather than using one index for each
component of the attribute vector. The jth event is as-
signed to bin m if Xmn 2

1
2 en < xjn , Xmn 1

1
2 en for all

n, where Xmn is the nth Cartesian coordinate of the cen-
ter of the mth bin in attribute space and en is the bin
width associated with the nth attribute. Thus the center
of the mth bin is specified by an N-dimensional vector
Xm . For N 5 2 with the attributes being positions, Xm
is a two-dimensional vector in the image plane centered
on the mth pixel. In that case, we usually take e1 5 e2
5 e, which is the pixel width. For an energy attribute,
en is the width of the energy window.

The number of bins associated with the nth attribute is
Mn , given by the range of allowed values of xjn divided by
the bin width en . In practice, Mn may be as small as 1
for an energy attribute or as large as 256 or 512 for spa-
tial coordinates.

After all J events have been binned, a total of gm
events will have accumulated in bin m. We can denote
the binned data set by an M 3 1 data vector g with com-
ponents gm , m 5 1...M. The total number of bins is

M 5 )
n51

N

Mn . (1)
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As noted in the introduction, M can be huge even for mod-
est N, so the binned data representation may not be fea-
sible for N larger than 4 or so.

Another representation of the data, very useful for the-
oretical analysis, is the impulse-valued random process.14

In this representation, we assign an N-dimensional Dirac
delta function to each event in the list. The resulting
random process is a generalized function in attribute
space defined by

g~r! 5 (
j51

J

d~r 2 rj!. (2)

This function is parameterized by the random attributes
$rj% and by J itself.

Given the random process g(r), we can obtain the
binned data vector g simply by integrating. The number
of events in bin m is given by

gm 5 E
bin m

g~r!dNr, (3)

where dNr is a volume element in attribute space and the
integral is over the region of attribute space associated
with the mth bin.

Equation (3) demonstrates a key difference between
g(r) and gm : the latter is a pure number, while the
former must have dimensions associated with it. Just
what these dimensions are depends on the specific at-
tributes that make up r. In the simplest case of N 5 2,
with both attributes being spatial coordinates, dNr has di-
mensions of area, so g(r) must have dimensions of recip-
rocal area.

B. Statistical Independence
The key assumption in the analysis that follows is that in-
dividual events are statistically independent. Although
we often take this condition for granted in photon-
counting problems, there are several important situations
that could invalidate it.

The first is detector saturation, manifested as dead
time or loss of resolution at high counting rates. If one
photon temporarily paralyzes the detector and there is a
significant probability of another photon arriving before it
recovers, the probability of detection of the second photon
is dependent on the presence of the first. Even if the sec-
ond photon is detected, the transient response of the de-
tector or the electronics may cause errors in the measured
position, energy, or other attributes of the second photon.
We shall neglect all of these effects in this paper, which
amounts to restricting the analysis to relatively low count
rates.

Statistical independence also fails in random multipli-
cation processes where one primary event gives rise to a
random number of secondary events.14,15 In a scintilla-
tion detector, for example, a single gamma-ray photon
produces a large number of optical photons, and these sec-
ondary events are not statistically independent since they
arise from the same gamma-ray photon.16 One can con-
ceive of systems that measure attributes of individual sec-
ondary events, though the authors know of no current
systems that do so. A scintillator could be viewed by an
optical photon-counting imaging system, for example, but
currently such systems do not have sufficient temporal
resolution to report coordinates or other attributes for the
individual optical photons. Since this paper is concerned
only with counting systems where multiple attributes of
individual events are measured, we rule out the possibil-
ity that the events under consideration are secondaries
associated with a single primary event.

On the other hand, random multiplication processes
may be present in the systems considered here, scintilla-
tion cameras being a prime example. The distinction is
that the attributes being measured are properties of the
primary event, and the randomness of the secondaries
simply leads to error in the estimates of the attributes.
As long as the primary events (the gamma rays in the
case of a scintillation camera) are statistically indepen-
dent, the analysis given here is valid.

Another problem that can invalidate the independence
assumption is randomness in the object being imaged.
There are two different statistical ensembles that we
might consider. The first is all realizations of the ran-
dom data set for one particular object; the second allows
the objects themselves to be drawn at random from some
distribution. In the latter case, the independence as-
sumption may hold conditionally for a fixed object but not
when the ensemble of objects is taken into account. Ob-
ject randomness is not considered in this paper.

C. Statistical Properties of List-Mode Data
We adopt a discrete object model and represent the object
by a K 3 1 vector f. The kth component of f, denoted fk ,
is the mean number of photons per second emitted from
the kth voxel (volume element) of the object. Though we
regard f as nonrandom, it is useful to write the data prob-
abilities as conditional on f as a way of emphasizing the
dependence of the data on the object.

The random vector rj is the result of a measurement of
the set of attributes associated with an individual event.
As with any measurement, there can be both systematic
and random errors. In the language of estimation
theory, there is both a bias and a variance associated with
the estimate or measurement. If we denote the true at-
tribute vector for the jth event by Rj , we can represent
the measurement in full generality as

rj 5 Rj 1 bj 1 hj , (4)

where bj is the bias or systematic error and hj is the ran-
dom error.

Thus the measured attribute vector rj has two random
components, Rj and hj . The statistics of the true at-
tribute vector Rj are determined by the object f and the
image-forming elements (collimator or lens, for example).
The bias and the random error, on the other hand, are as-
sociated with the measurement process, including the de-
tector, the electronics, and any subsequent data process-
ing. It is reasonable to assume that the bias and the
random error depend on Rj but not directly on f.

With these considerations in mind, we write the prob-
ability density function for rj as

pr~rjuf ! 5 E
att

dNRjprdet~rjuRj!prim~Rjuf !, (5)
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where the integral is over the range of each component in
attribute space, prdet(rjuRj) is the conditional probability
density function for rj given that event j has true at-
tribute vector Rj , and prim(Rjuf ) is the conditional prob-
ability density function for Rj given an object f. The sub-
scripts on the densities imply that prdet(rjuRj) represents
characteristics of the detector system and prim(Rjuf ) rep-
resents the image-forming system.

In practice, the two factors in the integrand in Eq. (5)
can be calculated from an analytical or numerical model
of the detector and imaging system. The second factor,
prim(Rjuf ), is computed from knowledge of the determin-
istic laws of propagation of photons from source to detec-
tor, and the first factor, prdet(rjuRj), requires a model of
the random estimation errors, which are associated with
bj and hj in Eq. (4). A specific example of how such a
computation is performed is given by Parra and Barrett.11

Since nothing distinguishes one photon from another,
pr(rjuf ) has the same functional form for all j. The mul-
tivariate probability density function for the list-mode
data with preset counts is then given by

pr~$rj%uf, J ! 5 )
j51

J

pr~rjuf !. (6)

For an acquisition with preset time, the list-mode data set
consists of J 1 1 random variables, namely, all of the rj
and J itself. The probability law for this data set is

pr~$rj%, Juf ! 5 pr~$rj%uf, J !Pr~Juf !

5 Pr~Juf !)
j51

J

pr~rjuf !. (7)

The notation is a bit tricky here since pr($rj%, Juf ) is a
probability density function for each of the rj but a prob-
ability for the discrete random variable J. Usually we
denote probabilities Pr ( • ) and probability density func-
tions pr ( • ), but in a mixed case like pr($rj%, Juf ) we still
use the lower case.

For later convenience we define two unnormalized den-
sities h(rj) and h̄(rj) by

h~rj! 5 J pr~rjuf !, (8)

h̄~rj! 5 J̄ pr~rjuf !, (9)

where J̄ is the mean number of events, averaged over
many acquisitions with the same object and the same pre-
set time:

J̄ 5 (
J50

`

J Pr~Juf !. (10)

For preset counts, h(r)dNr is the mean number of events
with attributes in the differential volume dNr centered at
point r in attribute space. A similar interpretation ap-
plies to h̄(r) with preset time.

D. Statistical Properties of Binned Data
In this section we review some well-known results con-
cerning statistics of binned data. The relation of these
results to list-mode data will be discussed in Subsection
2.F.
The probability that event j is recorded in bin m equals
the probability that rj falls in the region of attribute space
associated with that bin; this probability is given by the
integral

Pr~rj in bin m ! 5 E
bin m

pr~rjuf !dNrj [ am . (11)

Since we have assumed that pr(rjuf ) is the same for all j,
we can denote Pr(rj in bin m) simply as am , which is the
probability of any photon being recorded in bin m.

For a preset-count data acquisition, the mean number
of counts in bin m is simply

ḡm 5 amJ 5 E
bin m

h~r!dNr ~preset counts!.

(12)

Since the events are independent and the total number is
fixed, the univariate probability law for gm in this case is
a binomial,

Pr ~gmuf, J ! 5
J!

~ gm! !~J 2 gm!!
~am!gm~1 2 am!J2gm,

(13)

and the corresponding multivariate law for the entire
data vector g is a multinomial,

Pr~guf, J ! 5 J! )
m51

M
~am!gm

gm!
. (14)

Note that the gm are not statistically independent, be-
cause their sum must be J.

For preset time, we can write

Pr~guf ! 5 (
J50

`

Pr~guf, J !Pr~Juf !. (15)

If J is a Poisson random variable, as it almost invariably
is in practical photon-counting problems, this sum can
readily be performed.14 The result is that the gm are also
Poisson and statistically independent, with a probability
law given by

Pr~guf ! 5 )
m51

M

exp~2ḡm!
~ ḡm!gm

gm!
(16)

where now

ḡm 5 amJ̄ 5 E
bin m

h̄~r !dNr ~preset time!. (17)

Thus, with preset time and the assumption that J is a
Poisson random variable, the full probability law Pr(guf )
is determined by knowledge of h(r).

E. Statistical Properties of the Impulse-Valued Random
Process
The statistics of a spatial or temporal, impulse-valued,
Poisson random process are well understood.14,17 In this
section we extend these properties to a more general at-
tribute space.

Since g(r) is a generalized function with no finite val-
ues other than zero, a probability density function does
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not have much meaning. Instead we shall discuss the
first- and second-order statistics of g(r), or its mean and
autocorrelation function.

The conditional expectation of g(r), given f and J, is

E$g~r!uf, J% 5 E
att

dNr1 pr~r1uf !E
att

dNr2 pr~r2uf !•••

3 E
att

dNrJ pr~rJuf !g~r!. (18)

The procedure for performing this kind of average is de-
tailed by Barrett and Swindell14; the result is

E$g~r!uf, J% 5 h~r!. (19)

If we further average over J in a preset-time mode and
assume that J is Poisson, we find14

E$g~r!uf % 5 h̄~r!. (20)

The nonstationary autocorrelation function of g(r) is de-
fined by

G~r, r8! 5 ^g~r!g~r8!&, (21)

where the angle brackets denote averaging over the set
$rj% and, for preset time, J itself. For preset time and
Poisson J, a calculation analogous to the one in Ref. 14
shows that

G~r, r8! 5 h̄~r!d~r 2 r8! 1 h̄~r!h̄~r8!. (22)

Counterparts of Eqs. (18)–(22) for spatial or temporal
random processes are derived by Barrett and Swindell,14

among other sources. The main point of this section,
however, is that they apply in attribute space as well.

F. Some Interrelations
We have considered two kinds of data acquisition (preset
counts and preset time) and three kinds of data represen-
tation (list, bins, and random process). In this section we
point out some connections among the results.

First, with binned data the distinction between preset
time and preset counts is not great if the total number of
bins M is large and the number of events J is also large.
If M is large, chances are that no single bin will have a
large probability am of getting a particular event. By Eq.
(12), the mean number in bin m with present counts is
ḡm 5 amJ, but if am → 0 and J → ` in such a way that
amJ remains constant, it is well known18 that the multi-
nomial law of Eq. (14) approaches the Poisson of Eq. (16),
originally derived for preset time. Conversely, if J is
Poisson and J̄ is large, the standard deviation of J is
small compared with its mean, so it does not matter much
if J is fixed.

The distinction between binned data and list mode dis-
appears if the size of each bin is made small enough, since
in that case the average number of counts in any bin be-
comes much less than one. Then the actual random
number of events recorded in a bin is either 0 or 1 with
high probability, and the list of attribute vectors is simply
a list of addresses of bins with one count. This limit is
not a practical one, since it is wasteful of memory, but it
shows the theoretical relation between binning and list
mode: binned data approaches a list as bin size tends to
zero.

Also, the density functions h(r) and h̄(r) play a key
role in the statistics of all three kinds of data. These
functions were originally introduced as unnormalized ver-
sions of pr(rjuf, J) and pr(rjuf ), respectively, for list-mode
data [see Eqs. (8) and (9)]. In the random-process de-
scription of the data, these same functions reappeared
with a different interpretation. In that case they are di-
rectly the mean values of the impulse-valued random pro-
cess [see Eqs. (19) and (20)], and they determine the au-
tocorrelation function, at least for preset time and Poisson
counts [see Eq. (22)].

In the case of binned data, h(r) and h̄(r) have yet an-
other meaning: their integrals determine the mean
number of counts in each bin [see Eqs. (12) and (17)].
Moreover, if the bins are small enough that these density
functions do not vary appreciably over a bin width, we can
approximate the integrals as

ḡm . h~Xm!)
n51

N

en , (23)

where Xm and en are defined in Subsection 2.A. Thus,
except for a constant of proportionality, the sampled
value h(Xm) is approximately the mean number of counts
in bin m for preset counts, and h̄(Xm) has the same mean-
ing for preset time.

Comparison of Eqs. (7) and (15) reveals an interesting
distinction between list-mode and binned data. The list-
mode data set consists of J 1 1 random variables, the at-
tribute vectors plus J itself, so the probability law in Eq.
(7) includes J as a random variable. With binned data,
however, J is not a separate random variable since it is
the sum of the gm . Thus a sum over J appears in Eq.
(15) but not in Eq. (7). When Eq. (7) is used to compute
expectations, however, the sum over J reappears since J
is then a random variable to be averaged over.

3. MAXIMUM-LIKELIHOOD IMAGE
RECONSTRUCTION
Suppose we are given a data vector g described by a prob-
ability density function pr(guu ), where the vector u is a
set of unknown parameters. For a given realization of
the data, the likelihood L(u ) of the parameter vector u is
simply pr(guu ), regarded as a function of u with g fixed at
the observed value. Parameter estimation is frequently
performed by choosing the parameter vector u that maxi-
mizes the likelihood. The resulting u, denoted û, is called
the maximum-likelihood estimator of u. It has many de-
sirable properties, especially in an asymptotic sense.19–21

We can apply this concept to image reconstruction by re-
garding the components of f as the parameters to be
estimated.22

A. Binned Data
For binned data, the likelihood is given by Eq. (14) or (16),
where the dependence on f is contained in am or ḡm . To
make this dependence explicit, we assume that the imag-
ing system is linear, so that we can write
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ḡm 5 (
k51

K

Hmk fk 5 ~Hf !m , (24)

where Hmk is an element of an M 3 K matrix H describ-
ing the imaging system, and (Hf )m is the mth component
of the vector Hf. Since fk is the mean number of photons
emitted per second, Hmk is proportional to the acquisition
time in a preset-time mode. For preset counts, Hmk is
proportional to J.

With this system model, the likelihood for binned data
and preset counts is given, from Eqs. (12), (14), and (24),
by

Lbin~f uJ ! 5 J! )
m51

M
@~Hf !m /J# gm

gm!
. (25)

For preset time, and with the assumption that J is a
Poisson random variable, the likelihood for binned data is
[see Eq. (16)]

Lbin~f ! 5 (
J50

`

Pr~Juf !Lbin~f uJ !

5 )
m51

M

exp@2~Hf !m#
@~Hf !m#gm

gm!
. (26)

With this form of the likelihood, a popular method for
finding the maximum-likelihood estimator of f is the
expectation-maximization algorithm.23,24 This algorithm
finds the vector f that maximizes Lbin(f ) (or, equivalently,
its logarithm), subject to the constraint that all compo-
nents fk be nonnegative.

B. List-Mode Data
For list-mode data, the likelihood is given by Eq. (6) or (7).
The dependence on f in these equations is contained in
pr(rjuf ), which is related to the unnormalized densities
h(rj) and h̄(rj) in Eqs. (8) and (9). It follows from Eqs.
(6) and (8) that the likelihood for list-mode data and pre-
set counts is

L list~f uJ ! 5 J2J)
j51

J

h~rj!. (27)

A constant factor such as J2J is irrelevant in most appli-
cations of the likelihood, so Eq. (27) shows that the list-
mode likelihood for preset counts is simply the product of
the densities h(rj) for each event.

For preset time, Eqs. (7) and (27) show that

L list~f ! 5 Pr~Juf !L list~f uJ ! 5 Pr~Juf !J2J)
j51

J

h~rj!.

(28)

In contrast to Eq. (26), no sum over J appears in this
equation, since J is a separate random variable in list
mode.

To express the list-mode likelihoods as explicit func-
tions of f, we note that

pr~rjuf ! 5 (
k51

K

pr~rju j from k !Pr~ j from kuf !, (29)
where ‘‘j from k ’’ is shorthand indicating that the jth
event originated with the emission of a photon from the
kth voxel. Since all photons are equivalent, the probabil-
ity that any one of them originated from the kth voxel is
proportional to the object strength associated with that
voxel, so Pr( j from kuf ) } fk .

To determine the constant of proportionality in general,
we must consider the possibility that the overall system
sensitivity can vary with voxel location. The sensitivity
Sk is the probability that a photon emitted from voxel k is
detected, independent of what attribute vector is assigned
to it by the detector. Note that information about Sk is
not contained in pr(rju j from k), since the latter is the
probability density on rj given that the photon was emit-
ted from voxel k and detected. Thus Sk is a separate sys-
tem specification. In many practical photon-counting
systems, it is reasonable to take Sk as a constant, but we
shall leave it general.

The probability that the jth event originated in the kth
voxel is the mean number of photons emitted from the kth
voxel and detected divided by the total number emitted
and detected. The mean number emitted from the voxel
per unit time is fk , and the probability that an emitted
photon is detected is Sk . Thus, for all j,

Pr~ j from kuf ! 5
fkSk

(
k51

K

fkSk

. (30)

Equation (29) now becomes

pr~rjuf ! 5

(
k51

K

fkSk pr~rju j from k !

(
k51

K

fkSk

. (31)

From Eqs. (27), (29) and (31), the list-mode likelihood for
preset counts is

L list~f uJ ! 5

)
j51

J F(
k51

K

fkSk pr~rju j from k !G
S (

k51

K

fkSkD J . (32)

The corresponding log likelihood is

log@L list~f uJ !# 5 2J logS (
k51

K

fkSkD
1 (

j51

J

logF(
k51

K

fkSk pr~rju j from k !G .

(33)

For preset time, the list-mode likelihood is
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L list~f ! 5 Pr~Juf !L list~f uJ !

5
Pr~Juf !

S (
k51

K

fkSkD J )
j51

J F(
k51

K

fkSk pr~rju j from k !G .

(34)

But note that the mean number of detected counts in a
preset-time acquisition is given by

J̄ 5 t(
k51

K

Skfk , (35)

where t is the acquisition time. Thus

L list~f ! 5
Pr~Juf !

~ J̄ !J )
j51

J F(
k51

K

t fkSk pr~rju j from k !G
5

1

J!
exp~2J̄ !)

j51

J F(
k51

K

t fkSk pr~rju j from k !G ,

(36)

where the last step follows by use of a Poisson law for
Pr(Juf ). The log likelihood is now

log@L list~f !# 5 2log~J! ! 2 J̄

1 (
k51

J

logS (
k51

K

t fkSk pr~rju j from k !D .

(37)

The first term in this expression, 2log(J!), is an irrelevant
constant, but f appears in the other two terms. (One
must resist the temptation to approximate J̄ with the ob-
served J in the second term, since that would throw out
an essential dependence on f, the variable of interest in
the reconstruction). Thus maximum-likelihood recon-
struction from list-mode, preset-time data consists of
maximizing the sum of the second and third terms in Eq.
(36), subject to the constraint that all of the fk be nonne-
gative. An algorithm for doing this is given in a separate
paper.11

4. HYPOTHESIS TESTING
A. Discrimination of Nonrandom Signals
Objective assessment of image quality can be based on
the ability of an ideal observer to perform a specified task,
using the image data.21,25 One particular task that has
received considerable attention for this purpose is detec-
tion of an exactly known, nonrandom signal.26 For the
ideal observer, this task is essentially equivalent to dis-
crimination between two specified nonrandom signals. It
amounts to testing the binary hypothesis that either sig-
nal 1 or signal 2 is present; in the detection problem, sig-
nal 1 is zero. In an imaging context, the signals in ques-
tion are the objects being imaged, denoted f in this paper.
Thus the task is to determine whether f1 or f2 is present.
Performance on this task can be measured by the area
under a receiver operating characteristic (ROC) curve, or,
equivalently, by the detectability index d to be defined be-
low.

It is well known19,20,25 that the optimum strategy for
performing a binary discrimination task is to first com-
pute the likelihood ratio l, defined by

l 5
L~f2!

L~f1!
5

pr~guf2!

pr~guf1!
. (38)

The discrimination is then performed by comparing l
with a threshold lth and choosing the hypothesis that f2 is
present if l . lth . Equivalently, we can compute the log
of the likelihood ratio,

l 5 log~l! (39)

and compare it with log(lth). The result is the same, and
the log is often more convenient mathematically.

The ROC curve is generated by varying lth and, for
each value, plotting the true-positive rate (probability of
choosing f2 when it is actually present) versus the false-
positive rate (probability of choosing f2 when f1 is actually
present). In a detection problem where f1 is zero, the
true-positive rate is the probability of detection and the
false-positive rate is the false-alarm rate.

The detectability index d is defined by

d2 5
@E~ l uH2! 2 E~ l uH1!#2

1
2 var~ l uH1! 1

1
2 var~ l uH2!

, (40)

where E(l uHi) is the expected value of l , given that hy-
pothesis i (i 5 1, 2) is true, and var(l uHi) is the corre-
sponding variance. If l is a normal random variable,
which we can often argue on the basis of the central-limit
theorem, then the area under the ROC curve is uniquely
related to d.

B. Binned Data
The log of the likelihood ratio can easily be constructed
from any of the likelihood expressions given in Section 3.
For example, with binned data and preset time, it is given
by

l bin 5 log@lbin~f2!# 2 log@lbin~f2!#

5 (
m51

M

$~Hf1!m 2 ~Hf2!m 1 gm log@~Hf2!m#

2 gm log@~Hf1!m#%. (41)

Terms independent of the data g can be lumped into the
threshold without affecting the ROC curve, so l bin be-
comes

l bin 5 (
m51

M

gm logF ~Hf2!m

~Hf1!m
G 1 dull terms. (42)

This form shows that l bin can be realized as a linear filter
where each datum gm is multiplied by a weight given by
the logarithmic expression in Eq. (42). When the weight
is simply the difference of the means under the two hy-
potheses, the process is called matched filtering; the
present process is therefore referred to as logarithmic
matched filtering.
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Since l bin is a linear function of the data and the gm
are independent Poisson random variables, it is straight-
forward to compute d2; the result is

d2 5

H (
m51

M

@~Hf2!m 2 ~Hf1!m#logF ~Hf2!m

~Hf1!m
G J 2

1

2 (
m51

M

@~Hf2!m 1 ~Hf1!m#log2F ~Hf2!m

~Hf1!m
G

. (43)

This expression was derived by Cunningham et al.27 and
used as a figure of merit for image quality by Wagner
et al.26

C. List Mode
In this section we present expressions analogous to Eqs.
(42) and (43) for the log likelihood and detectability but
for list-mode data. Only the case of preset time will be
considered, but the case of preset counts is similar.

We define a density h̄ i(rj) as in Eq. (9) but with a sub-
script to distinguish which of the two objects is present.
Thus, from Eqs. (9), (31), and (35), we write

h̄i~rj! 5 J̄i pr~rjufi! 5 t(
k51

K

fikSk pr~rju j from k !,

i 5 1, 2. (44)

Using Eq. (37), we find

l list 5 J̄1 2 J̄2 1 (
j51

J

logF h̄2~rj!

h̄1~rj!
G . (45)

The constant terms J̄1 2 J̄2 are irrelevant for purposes of
hypothesis testing since the objects to be discriminated
are specified. The term 2J̄ could not be dropped in Eq.
(37) since it was a function of the unknown f in a recon-
struction problem, but we can drop the corresponding
terms in Eq. (45).

Comparison of Eq. (45) with Eq. (42) shows that there
is a similar logarithmic structure, but the dependence on
the data is quite different. In l bin , the data gm appear
linearly, but in l list the attribute vectors rj are buried in
the arguments of the densities. In contrast to l bin , l list
cannot be realized by a linear filter.

Next we turn to the detectability index, which requires
computation of the mean and variance of l list . It is
shown in Appendix A that

d2 5

H E
att

dNr@ h̄2~r! 2 h̄1~r!#logF h̄2~r!

h̄1~r!
G J 2

1

2
E

att
dNr@ h̄1~r! 1 h̄2~r!#log2F h̄2~r!

h̄1~r!
G . (46)

The structure of this expression is very similar to that of
the Cunningham formula, Eq. (43). Evaluation of Eq.
(43) requires computation of the mean data vector for
each object, while evaluation of Eq. (46) requires compu-
tation of the mean data density in attribute space for each
object.
5. SUMMARY AND CONCLUSIONS
The main contribution of this paper has been the devel-
opment of a likelihood formalism for photon-counting im-
aging systems in which multiple attributes are measured
for each photon. Since binning of the count data may not
be practical when the number of attributes per photon is
larger than about four, attention was concentrated on
list-mode data storage. Separate likelihood formulas
were derived for acquisitions with preset time and ones
with present number of events. In Section 3 we derived
expressions for list-mode likelihood that can serve as the
starting point for a specific reconstruction algorithm.
The algorithm itself is derived and discussed in a sepa-
rate paper.11 In Section 4 we derived expressions for the
likelihood ratio and the detectability index for list-mode
data when the task was detection of a nonrandom object
or discrimination between two such objects. The detect-
ability expression is the list-mode counterpart of a for-
mula due to Cunningham et al.27 that has been used for
image-quality assessment.

A limitation of the theory developed here is that it con-
siders only nonrandom objects. It has been noted in the
literature28–30 that classification tasks based on nonran-
dom objects can lead to counterintuitive results on image
quality. It is argued in these papers that it is better to
allow some degree of randomness in the objects to be dis-
criminated.

Unfortunately, it has not been possible to develop a
useful theory for the likelihood ratio or the detectability
when object randomness is included. With binned data,
this difficulty has led to consideration of suboptimal lin-
ear discriminants in place of the likelihood
ratio.21,25,29,31,32 These discriminants have proved to be
an effective tool for optimizing imaging systems and pre-
dicting performance of human observers.

In the case of list-mode data, the natural interpretation
of a linear discriminant is that it is linear not in the at-
tributes themselves but in the random process g(r). Fu-
ture work will investigate the properties of such linear
discriminants.

APPENDIX A: COMPUTATION OF d2 FOR
LIST-MODE DATA
With preset time, l list is a function of the J 1 1 random
variables $rj% and J itself. Its expectation when hypoth-
esis Hi is true (or object fi is present) is given by14

E~ l listuHi! 5 (
J50

`

Pr~JuHi!E
att

dNr1 pr~r1uHi!

3 E
att

dNr2 pr~r2uHi!•••

3 E
att

dNrN pr~rNuHi!l list . (A1)

We now use Eq. (45) for l list and drop the constant terms
J̄1 2 J̄2 , yielding



2922 J. Opt. Soc. Am. A/Vol. 14, No. 11 /November 1997 Barrett et al.
E~ l listuHi! 5 (
J50

`

Pr~JuHi!E
att

dNr1 pr~r1uHi!

3 E
att

dNr2 pr~r2uHi!•••

3 E
att

dNrJ pr~rJuHi!(
j51

J

logF h̄2~rj!

h̄1~rj!
G .

(A2)

Consider one particular value of j, say, j 5 17. Then all
of the integrals except the one over r17 yield unity, and
that one gives

E
att

d17r17 pr~r17uHi!logF h̄2~r17!

h̄1~r17!
G

5
1

J̄i
E

att
dNr17h̄i~r17!logF h̄2~r17!

h̄1~r17!
G . (A3)

Since r17 is just a dummy variable of integration, it does
not matter which value of j was chosen. There are J
identical terms in the sum over j, and we have

E~ l listuHi! 5 (
J50

`

Pr~JuHi!
J

J̄i
E

att
dNrh̄i~r!logF h̄2~r!

h̄1~r!
G

5 E
att

dNrh̄i~r!logF h̄2~r!

h̄1~r!
G . (A4)

As a step toward computing the variance, we consider the
average of the square of l list , given by

E$~ l list!
2uHi% 5 (

J50

`

Pr~JuHi!E
att

dNr1 pr~r1uHi!

3 E
att

dNr2 pr~r2uHi!•••

3 E
att

dNrJ pr~rJuHi!

• (
j51

J

logF h̄2~rj!

h̄1~rj!
G (

j851

J

logF h̄2~rj8!

h̄1~rj8!
G .

(A5)

In the double sum over j and j8, there are J terms for
which j 5 j8, and there are J2 2 J terms for which j
Þ j8. Performing each of these averages separately and
making use of the statistical independence of rj and rj8 for
j Þ j8, we find
E$~ l list!
2uHi%

5 (
J50

`

Pr~JuHi!H J

J̄i
E

att
dNr h̄i~r!log2F h̄2~r!

h̄1~r!
G J

1 (
J50

`

Pr~JuHi!

3 XJ2 2 J

J̄i
2 H E

att
dNr h̄i~r!logF h̄2~r!

h̄1~r!
G J 2C. (A6)

For Poisson J,

(
J50

`

Pr~JuHi!~J2 2 J ! 5 J̄i
2, (A7)

so

E$~ l list!
2uHi% 5 E

att
dNr h̄i~r!log2F h̄2~r!

h̄1~r!
G

1 @E~ l listuHi!#
2. (A8)

Thus the variance of the log of the likelihood ratio is

var~ l listuHi! 5 E
att

dNr h̄i~r!log2F h̄2~r!

h̄1~r!
G . (A9)

Equations (A4) and (A9) are inserted into Eq. (40) to ob-
tain the expression for d2 in Eq. (46).
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