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Explain a time series with a decomposition that
Detects timing of “events” 
Events characterized and identified by their time course
Time course of events discovered from data de novo
Events have variable amplitudes (but positive) 
Overlapping events are additive

Alternative Priors
Extraction of fundamental patterns from databases of speech, 
music and environmental sounds
Enforcing orthogonality between templates
Application to multichannel data

Task: Spike sorting in extracellular recordings
Challenge: overlapping spikes

Task: Template matching
Challenge: unknown templates

Task: Signal decomposition
Challenge: “good” decomposition, 
e.g. sparse, non-negative amplitudes.

Exploit waveform regularity/reproducibility
Spike trains in extracellular recordings
Electronic music, instruments like piano, drums

Extracellular recordings from primary-like cells 
within  anteroventral cochlear nucleus with a 
single electrode typically show a succession of 
events made up of three sub-events: 

• a small pre-synaptic spike  from the large 
auditory nerve fiber terminal, 

• a medium-sized post-synaptic spike from the 
initial segment of the axon where it is 
triggered (the IS spike)

• a large-sized spike produced by back-
propagation into the soma and dendrites of 
the cell (the soma-dendritic or SD spike) 

Conditions:
•Single channel
•Unknown sounds
•Unknown timings
•No training data

Data:
2 s drum loop
4 kHz sampling rate

Goal: 
Estimate the sound patterns, 
their timings & amplitudes

Quantitative evaluation on synthetic data

Bass 
drum
Snare 
drum

Example of result for SNR=2

Performance as a function of SNR
and similarity between templates

Discussion
Related techniques

Update equation for A contains correlations, i.e. the algorithm 
does a form of template matching.
For independent amplitudes A the updated equation for B results 
in reverse correlation.
Extracts templates directly from the data without supervision, i.e. 
it is a form of unsupervised clustering.

Decomposition criteria
Spike/events can be overlapping.  
Templates do not need to be non-negative as in NMF.
Templates do not need to be orthogonal as in PCA or ICA.
But works best if templates are different (“orthogonal”).
Positivity and sparseness of amplitudes is the key criterion.

Properties
Algorithm is guaranteed to converge.
Events may occur at any point in time (in contrast to PCA, ICA, 
NMF), i.e. decomposition is shift invariant. 
Algorithm decomposes signals in spike trains convolved with 
basis functions (as Smith & Lewicki).
Model has the form of a convolutive mixture. 
However, non-negative constraint, sparseness and the length of A 
and B make the interpretation very different than that of blind 
source separation.  

Signal model
We model data sequence with a convolutive factorization

Each stands for a different type of event with time 
course
Each    stands for a different example of a time sequence
We think of          as amplitudes, therefore demand

Further, if we think of           as a spike train (of variable 
amplitude), we should demand that           is sparse, 
i.e., follows the prior distribution of the form:

Relation to other criteria:

4)

Conditions:
•Synthetic spike trains with additive Gaussian noise
•Two types of “spikes”, with a cosine of 74°→ similarity 0, while similarity 1=identical templates
•30 events, amplitude uniformly distributed in [0,1], 100 retries.

Optimization of the model

Diagonal matrix with K 
different Lagrange multipliers 
adjusted so that 

Semi-NMF (Ding et al.)

NMF (Lee&Seung)

Shift-invariant semi-NMF (prop.)

Shifted-NMF (Morup et al.)

In short, including noise, the data          is modeled as

With Gaussian independent noise and independent amplitudes, the 
MAP estimate is then

Templates are normalized to avoid scaling ambiguity
stands for the       norm (quasi-norm for              )

Strength of       penalty depends on SNR:

Sparseness determined by     depends on firing rate
Can also be written based on Einstein notation (                          ):

update with sparseness term

Convergence proof including sparseness term can be obtained
based on inequality derived by Kameoka:

update with normalization: 
constrained least squares solution using Lagrange multipliers

with the shifted amplitudes and templates

Goal

Motivation

Neural Information
Processing Systems
Conference

(SNR=+20dB)
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The signal to be analyzed is decomposed
into a weighted sum of templates.
Templates are learned from the data in
contrast to matching pursuit; Weights are
positive in contrast to ICA, PCA, etc;
Template sign is unconstrained in contrast
to NMF; Templates are allowed to shift in
time in contrast to semi-NMF. Sparsity is
enforced. The method is applied to single-
electrode extracellular recordings in the
cochlear nucleus, and to audio signals. The
algorithm achieves good performance if the
SNR is above 6dB and templates are
sufficiently distinct.
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