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Abstract—Advances in neural signal and image acquisition as
well as in multivariate signal processing and machine learning are
enabling a richer and more rigorous understanding of the neural
basis of human decision-making. Decision-making is essentially
characterized behaviorally by the variability of the decision across
individual trials—e.g., error and response time distributions. To
infer the neural processes that govern decision-making requires
identifying neural correlates of such trial-to-trial behavioral
variability. In this paper, we review efforts that utilize signal
processing and machine learning to enable single-trial analysis
of neural signals acquired while subjects perform simple deci-
sion-making tasks. Our focus is on neuroimaging data collected
noninvasively via electroencephalograpy (EEG) and functional
magnetic resonance imaging (fMRI). We review the specific frame-
work for extracting decision-relevant neural components from
the neuroimaging data, the goal being to analyze the trial-to-trial
variability of the neural signal along these component directions
and to relate them to elements of the decision-making process. We
review results for perceptual decision-making and discrimination
tasks, including paradigms in which EEG variability is used to
inform an fMRI analysis. We discuss how single-trial analysis
reveals aspects of the underlying decision-making networks that
are unobservable using traditional trial-averaging methods.

Index Terms—Decision-making, electroencephalography, func-
tional magnetic resonance imaging, machine learning, single-trial
analysis.

I. INTRODUCTION

O UR ability to make rapid decisions based on transient
stimuli is a unique aspect of our brains’ capacity to

process information. Recent advances in signal processing
and neuroimaging have begun to provide tools for answering
questions related to how we make rapid decisions by enabling
the identification of cortical networks underlying rapid deci-
sion-making in the human brain. Typically, such studies utilize
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functional magnetic resonance imaging (fMRI) and have iden-
tified areas in frontal, parietal, and thalamic cortex in which
metabolic activity correlates with decision-related variables.
However, decision-making is a dynamic process, and the lo-
calized activations found with fMRI must be part of cortical
networks defined by the relative timing of these activations
and their causality. Electroencephalography (EEG) offers the
ability to resolve neural processing at the millisecond level,
however, with a relatively poor spatial resolution. Combina-
tions of these modalities have been recently developed enabling
more precise identification of cortical networks underlying
rapid decision-making, including those processes involved
in integration of contextual information and accumulation of
multiple sources of evidence.

At the core of the scientific and engineering challenge is how
to analyze neuroimaging data on a trial-by-trial basis, since per-
ceptual decision-making is in fact characterized by variations in
behavior across trials, even given nominally identical stimuli.
In this paper, we review experimental results in animals and
humans with respect to perceptual decision-making, focusing
on the role neuroimaging has to play in shedding light on the
underlying information processing. We also review how signal
processing and machine learning play a role, specifically in our
ability to identify meaningful neural signatures, on a trial-by-
trial basis, to characterize the underlying network processes. We
also review our own specific results, which focus on using EEG,
fMRI, and both simultaneously for inferring the networks un-
derlying perceptual decision-making.

II. DECISION-MAKING AND NEUROIMAGING

Perceptual decision-making is the process by which in-
coming sensory information is combined and used to influence
our behavior [1]. A number of ground-breaking electrophys-
iology studies have already laid the foundation upon which
future research on perceptual decision-making will be con-
ducted [2], [3].

A. Perceptual Decision-Making in Animals

Experiments in primates have already established a relation-
ship between behavioral choices and neuronal activity in sen-
sory regions. In a motion discrimination task during which mon-
keys had to discriminate the direction of motion from random
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dot kinetograms consisting of varying amounts of coherent mo-
tion, Newsome et al. showed that the activity of direction-se-
lective neurons in middle temporal area (MT) can provide an
adequate account of behavioral performance [4]–[6] and that
trial-to-trial variability in these neuronal signals could predict
the monkeys’ actual choices [7]. In addition, electrical micros-
timulation of MT neurons biased the monkeys choices towards
the neurons’ preferred direction [8]–[10]. Interestingly, this pat-
tern of neural responses appears to extend even to highly com-
plex visual stimuli such as faces [11], [12].

Similarly, in the somatosensory domain, Romo et al. used a
task in which monkeys had to discriminate the vibration fre-
quency of two sequentially presented tactile stimuli and report
which one was the highest. They showed that, on average, the
responses in primary somatosensory cortex (S1) correlated with
the behavioral performance of the monkeys and the trial-to-trial
fluctuations in these responses predicted the animals’ choices
[13]. Furthermore, microstimulation of S1 neurons, in the ab-
sence of physical stimulation, was sufficient to reproduce the be-
havioral patterns seen under normal conditions [14], [15]. These
findings support the idea that neuronal signals in areas such as
MT and S1 provide the sensory evidence upon which monkeys
base their decisions regarding motion and vibrotactile discrim-
ination, respectively.

How, then, can activity in these areas be used to influence
decision-making? Theoretical models of decision-making have
modeled binary perceptual choices as a race-to-barrier diffu-
sion process [16]–[20]. The diffusion model for two-choice de-
cisions in particular assumes that in the decision process, evi-
dence is integrated over time to one of two decision thresholds
corresponding to the two choices. The rate of accumulation is
called drift rate, and it is determined by the quality of the sen-
sory information. The better the information quality, the larger
the drift rate toward the appropriate decision boundary and the
faster and more accurate the response.

In the monkey brain, a region in the intraparietal sulcus, com-
monly known as the lateral intraparietal (LIP) area, is shown to
exhibit some of the characteristics proposed by the aforemen-
tioned models. Specifically, electrophysiological recordings in
LIP during the motion discrimination task [21]–[24] have shown
that, for choices made towards the response field of the neuron
under consideration, neural activity increased in a ramp-like
fashion, consistent with a temporal integration process. The rate
at which responses increased was proportional to the amount of
coherent motion in the stimulus. This buildup of activity is be-
lieved to represent the accumulated difference in firing rates of
two opposing pools of direction selective MT neurons. Just prior
to the response, neural responses in LIP achieved a common
firing rate, independent of motion strength, consistent with the
idea of a common decision threshold. More recently, these re-
sults were extended from a two- to a four-choice direction dis-
crimination task [25]. The same pattern of activity was reported
in the frontal eye fields (FEFs) and the dorsolateral prefrontal
cortex (DLPFC) [26] and is seen as evidence that all of these
areas are involved in the conversion of an analog motion repre-
sentation into a binary decision variable.

Likewise, during vibrotactile frequency discrimination, re-
gions in the secondary somatosensory (S2), medial premotor

cortex (MPC), ventral premotor cortex (VPC), and DLPFC were
reported as being involved in decision formation [27]–[30]. As
with the LIP, responses in the MPC and VPC were also shown
to form a decision by computing the difference between the re-
sponses of S2 neurons that code for each of the two frequencies
used for stimulation [29], [30]. Furthermore, it is believed that
some S2 neurons have the capacity to combine past and present
sensory information to form a decision [28] and that short-term
memory representation in DLPFC might also play a role in de-
cision-making [27], [31].

B. Perceptual Decision-Making in Humans

The principles that have emerged from the electrophysiology
work in animals have inspired scientists to study the neural cor-
relates of perceptual decision-making in humans using nonin-
vasive neuroimaging techniques such as the fMRI and the EEG.

Heekeren et al. used fMRI to study perceptual deci-
sion-making during a face-versus-house discrimination task
[32]. Consistent with previous neuroimaging studies [33]–[37],
they identified face and house selective regions in the ventral
temporal cortex that, much like MT in a motion discrimination
task, provide the sensory evidence upon which a decision is
later computed. Specifically, they showed that these regions
were modulated by the amount of degradation in the face and
house stimuli, respectively. Inspired by the work of Romo et al.,
recent fMRI studies have also used vibrotactile frequency tasks
to identify regions that encode the sensory evidence needed for
a somatosensory decision. Consistent with electrophysiological
data in monkeys, they found that the somatosensory cortex and
S1 in particular encode the incoming sensory information [38],
[39].

As summarized above, animal work has provided evidence
that the brain combines this sensory information using a dif-
ference-based comparator operation. Heekeren et al. directly
tested whether a comparison operation is also at work in the
human brain using the face-versus-house discrimination task
outlined above [32]. They proposed that higher level decision
areas should show the greatest activity on easy trials (clear im-
ages of faces and houses) rather than on hard ones (degraded
images) and, in addition, they should correlate with the differ-
ence between the signals from the face and house selective re-
gions that represent the sensory evidence. The only region that
exhibited this pattern of activity was the posterior portion of the
left DLPFC. Therefore, even for complex object categories, the
brain appears to integrate the outputs of different pools of selec-
tively tuned neurons in order to make perceptual decisions.

Another recent fMRI study also showed how the fMRI signal
can be used to examine the process of accumulation of sensory
evidence [40]. Pictures were revealed gradually over the course
of several seconds, and participants indicated the time of recog-
nition with a button press. There was a gradual buildup in fMRI
signal peaking in correspondence with the time of recognition in
inferior temporal, frontal, and parietal regions, suggesting that
these regions might be involved in accumulating sensory evi-
dence.

Contrary to electrophysiology studies in monkeys that have
thus far claimed that “to see and decide is, in effect, to plan a
motor-response” [41], Heekeren et al. also investigated whether
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decisions may be transformed into actions independent of the
motor effectors used to indicate the choice [42]. They used the
same motion discrimination task used in the monkey studies and
asked participants to indicate their choice with either a button
press or an eye movement. They found that the area in the left
DLPFC they identified earlier [32] exhibited decision-related
activity (as highlighted above) independent of the motor system
used to indicate the choice. They concluded “that humans may
have evolved a more abstract decision-making network, thereby
allowing a more flexible link between decision and action” [32].

Despite fMRI’s excellent spatial resolution, the slow scan-
ning rates and the low-pass nature of the hemodynamic signal
place significant constraints on its capacity to provide high tem-
poral resolution information. To overcome this limitation, ad-
vanced multivariate analysis techniques have been developed
to also study the temporal characteristics of perceptual deci-
sion-making in humans, as we highlight in the next sections.

III. MULTIVARIATE PROCESSING AND NEUROIMAGING

A. Capability of Various Neuroimaging Modalities

All noninvasive neuroimaging modalities make only indirect
measures of neuronal activity. fMRI records the local hemo-
dynamic response (blood oxygenation level) within the brain
following increased metabolic activity of neurons. This can be
recorded with millimeter spatial resolution over the entire brain,
which results in thousands of simultaneously recorded voxels.
Hemodynamic response is sluggish (1–5 s), and so activity is
typically sampled only every 1 or 2 s.1

EEG measures electrical potentials that build up at the surface
of the scull resulting from large-scale ionic currents in the brain.
These currents originate primarily at the dendrites of neurons
reflecting neuronal input activity. Surface electrical potentials
are easy to record and capture primarily cortical activity with
centimeter spatial resolution. Currents from deeper structures
decay significantly and are too broadly distributed on the scull
to be localized with much accuracy. However, EEG signals do
track fast changes of neural activity and are thus recorded with
millisecond temporal resolution. Useful signal may be found at
frequencies of up to 80 Hz, which is much higher than the less
than 1 Hz temporal resolution of fMRI.

Magnetic encephalography (MEG) detects static magnetic
fields generated by the same ionic currents that underlie the
EEG signal. MEG therefore has a similar temporal resolution.
However, because the brain is engulfed by the cerebrospinal
fluid, direct currents measured in EEG are partially shunted,
while magnetic field lines cross unaltered, leading to a some-
what better localization of cortical current sources when using
MEG. As a corollary, fast synchronous neuronal activity that
has a shorter length scale is easier to detect and localize, and so
the useful frequencies in MEG may be as high as 100 Hz. The
disadvantage of MEG is its high cost, which is comparable to
MRI with its much higher spatial resolution.

1Because measuring magnetic resonance is very costly and requires signifi-
cant infrastructure, some have proposed to image hemodynamic activity using
near-infrared light, which does penetrate the scull. While this functional near-in-
frared technology is more accessible, its spatial resolution and penetration depth
are limited by light diffusion, and its temporal resolution remains limited by the
slow hemodynamic response.

Fig. 1. Power analysis: number of independent measures� required at a given
SNR to achieve statistical significant difference in mean activity between two
experimental conditions. Curves for various significance levels (p-values) are
computed assuming Normal distributed data. Both fMRI and EEG require about
the same number of trials to show comparable significance levels, thus sug-
gesting that their SNR is comparable. Multivariate analysis increases � , in ef-
fect, by using multiple samples, thus requiring fewer trials for averaging. Ma-
chine-learning techniques are used to determine over which samples to average
and with which weighting.

B. Decoding Problem is Similar for Different Modalities

While the various functional neuroimaging modalities may
have different spatial and temporal resolutions, when consid-
ering activity on a second by second basis, they all provide a
comparable number of separate measurements. fMRI measures
perhaps once a second a volume of approximately 50 50
20 voxels. EEG or MEG measure about 100 channels at perhaps
500 samples per second. In either case, one is left with approxi-
mately 50 000 measurements per second. We will refer to these
in the following simply as “samples” reflecting a sampling of
brain activity either in space (fMRI voxels) or space–time (EEG
electrodes and samples). Interestingly, the amount of noise in
the two modalities are also comparable. Typically, for either
modality, trials have to be repeated several times before signif-
icant differences between two experimental conditions can be
seen (maybe, ). A simple power analysis indicates that
the signal-to-noise ratio (SNR) in the individual dimensions is
therefore about 13 dB (see Fig. 1 for other values of ).

Rarely do individual samples carry sufficient information to
distinguish between different states of the brain. To recover sig-
nificant activity, conventional analysis has relied on averaging
over many repeated trials of the same stimulus and task condi-
tions under the assumption that the relevant neuronal activity is
reproducible from one trial to the next. While this approach has
been highly successful in the past, we now know that it severely
underestimates the amount of information that can be extracted
from these simultaneous recordings. The reason is that activity
may be distributed over very many samples and may not be
strong enough in any one sample to allow a distinction between
different neural processes. Instead, when carefully combining
multiple samples with multivariate analysis techniques, one can
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identify neural activity that correlates well with observed behav-
ioral responses despite rather low SNR.

Given the different nature of fMRI and EEG, one would think
that the analysis techniques to accomplish this differ drastically
between the two modalities. Surely the correlation structure of
neighboring samples and the trial-to-trial variability differ sig-
nificantly, and this should affect how one is to combine these
high-dimensional data. However, despite the significant differ-
ence of fMRI and EEG, there has been a remarkable convergence
in the techniques that have been used to extract behavioral cor-
relates. The successful multivariate analysis methods are based
on modern machine-learning techniques, which aim to uncover
a pattern in high-dimensional spaces based on a small set of ex-
amples. The linear decoding techniques often amount to cleverly
averaging over the large dimensional space, thus accomplishing
what trial-averaging typically does, i.e., use a large number of
independent measurements to increase SNR (see Fig. 1).

What is most remarkable is that the successful techniques
for decoding neuroimaging signals are very similar to the tech-
niques that have been proposed in machine learning for the goal
of classifying complex dynamical patterns. The basic notion of
what is known as reservoir computing [43], [44] is to represent a
stimulus in a high dimensional space capturing many of its non-
linear features but then use a simple weighted sum of these fea-
tures to classify the pattern into a few categories. It appears that
the specific choice of nonlinear features is not very important as
long as there is a large number of distinct features to assure that
all relevant invariances are captured and that the representation
is diverse enough to distinguish between different stimuli [45].

The neuroimaging signals we measure surely are a highly non-
linear representation of the perceptual stimuli or decision pro-
cesses we aim to decode. The relevant parameters for decoding
are then the dimensionality of the problem, the amount of noise,
and the invariance and diversity in the feature space. In that re-
gard, the challenge of extracting neural correlates is strikingly
similar for the different neuroimaging modalities: The goal is to
find in an approximately 10 -dimensional space neural activity
that correlates with a few possible decision outcomes (often just
two) based on about 10 exemplars of signals with at best 10 dB
in SNR. The only potential difference in the modalities is then the
invariance and diversity of neural signals. Only here is where
domain knowledge of the different modalities is required.

C. Single-Trial Analysis and the Decoding Problem

The original emphasis on single-trial analysis of neuroimaging
data comes from the ambitious goal of “reading the brain,” that
is, interpreting neural signals at the speed in which they develop
so as to translate thought into action [46]. Aside from the po-
tential practical benefits of such technology,2 there is an impor-
tant benefit to the study of perceptual and cognitive processing.

2Human studies have used EEG signal to extract neural activity in real-time
with sufficient accuracy to control a cursor on the screen in one or two dimen-
sions [47], [48] or to control the grip of a robotic hand [49]. Animal studies
using electrodes implanted in various cortical areas have demonstrated two- and
three-dimensional control of a robotic arm [50]. The obvious goal of this work is
to develop a brain-controlled communication or prosthetic device to overcome
the impairments resulting from spinal-cord injuries (for an overview, see [51]).
Our team has used single-trial analysis to augment the performance of unim-
paired subjects at a perceptual decision-making task, specifically, visual search
[52].

At a minimum, by combining multiple measures to an aggregate
measure with higher SNR, one may be able to discover signals
that have thus far eluded detection. Equivalently, it may be pos-
sible to obtain similar effect sizes with fewer trials, thus allowing
the experimenter to segment the data into multiple response cat-
egories, e.g., distinguish fast responses from slow responses to
identify the correlates of response-time variability [53]. Indeed,
even when subjects are given an identical task with an identical
stimulus, they never repeat the exact same behavior at the exact
same speed and with the same neuronal signals. Uncovering the
systematic covariation of neural signals with variations in behav-
ioral response (speed, accuracy, strength, etc.) may shed light on
internal states such as arousal, attention, motivation, etc., which
are difficult to control experimentally. In addition, in some ex-
periments, the number of stimulus dimensions may be too large
to systematically explore. Quantifying the correlation of single-
trial activity with a large set of stimulus features may uncover re-
lationships that would otherwise be impossible to explore due to
a limited sample size. Finally, single-trial activity could be used
to correlate distinct neuroimaging modalities to each other [54]
and even to identify common signals in the activity detected for
different subjects [55].

The methods that have been developed for single-trial anal-
ysis can be grouped into two categories: 1) methods in which
the presented stimulus is used to predict the resulting neural ac-
tivity—we call this the forward model; and 2) methods that try
to determine from the neural signal what stimulus was presented
to the subject or how the subject responds. We call this direct de-
coding and note that forward models are often also inverted to
similarly decode brain activity. These two approaches will be
discussed next, followed by a discussion of the central problem
of regularization.

D. Direct Decoding of Discrete States

The most straightforward method of “reading the brain” is
to try to distinguish between two externally observable events
based on some appropriate sum of the observed brain activity.
For instance, say a subject on a given trial is presented with a
target stimulus—call this the positive class. The negative class is
the case in which the subject was presented a stimulus without
a target. Assume that one records for the th trial in sample
the activity . To decide on the class, a linear classifier takes
a weighted sum of this activity

(1)

If this sum is larger than some threshold , then this
trial is considered to belong to the positive class; otherwise
it is considered to belong to the negative class. The magnitude
and sign of the weights indicates how much each sample should
contribute to the decision and in which direction. The goal is
to find weights such that the classification into positive and
negative class is correct for most trials.

Essentially, the goal is to determine from the magnitude of the
measured brain activity whether the subject did or did not per-
ceive the target. If we are able to do so, then we can argue that we
have found the neural correlate of perception, or, equivalently,
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we can argue that we can “read” the brain signals to determine
whether the subject did or did not perceive a target. The same
could be done with signals associated with decision-making by
trying to correctly classify what choice a subjects is about to
make, or by predicting whether a response to a task will be cor-
rect or incorrect.

Given the dimensions of the samples, it is easy
to find a suitable set of weights that give the correct classifi-
cation on, say, “training” exemplars. The challenge
lies in finding weights that will perform well on “testing” ex-
amples that have not been used during “learning,” i.e., weights
that will generalize well. There are a variety of learning algo-
rithm for this binary classification problem, which vary in their
ability to generalize despite the small number of training ex-
emplars and in their ability to tolerate noisy exemplars. Sup-
port-vector machines (SVMs) perform well when the number of
degrees of freedom is large compared to the number of training
exemplars—as in the present case with . These al-
gorithms focus on exemplars that are closest to the dividing
boundary between the two classes—these are called the sup-
port vectors. However, without modifications, SVMs do not per-
form well in the presence of significant noise, as the boundary
elements will invariably be misleading (for most brain-reading
applications SNR dB). Alternatively, one can use lo-
gistic regression (LR), which is naturally suited to noisy data,
as the transition from one class to the other is assumed to be
gradual following a logistic function. On the other hand, in the
case of perfectly separable data, LR has to be modified to pre-
vent a transition boundary that is infinitely sharp. Regulariza-
tion can be used to trade off between perfect separability, for
which SVM dominates, with low SNR for which LR dominates
(see Section III-G). In our applications, we have sometimes also
used Fisher linear discriminants (FLDs), which aim to increase
SNR [56]. While FLD is simple to compute, it is not very ro-
bust since the required covariance estimates are dominated by
outliers, which are common in neuroimaging data.

Direct decoding using linear classification as outlined above
has been used with great success in fMRI, and several reviews
are already available [46], [57]. The following are just a few
examples of the type of activity that could be extracted: Brain
activity of a listener was used to detect the identity of one of
two speakers [58]. The geometry of a visual stimulus can be de-
termined from visual cortex activity by predicting areas of high
and low contrast on the image [59]. Decoders have also been
used to distinguish spatial memories by distinguishing between
two locations to which a subject navigated within a virtual en-
vironment despite identical visual appearance of the locations
[60]. Concepts evoked by simple line drawings could be catego-
rized without the use of visual cortex based on activity broadly
distributed over the entire brain, and this categorization gener-
alized well across subjects [61]. Free choice decisions could be
detected several seconds ahead of an overt behavioral response
[62], and even ahead of the conscious realization by the subject
that he/she had reached a decision [63].

The voxels that contribute significant discriminant activity in
these classifications indicate which brain areas are involved in a
specific task. The results from these studies have changed many
existing notions of localization of brain activity. In many in-

stances, it has become clear that processing involved larger areas
that are overlapping, suggesting a higher degree of multitasking
than previously thought.

We have used linear classification of EEG signals on a single-
trial basis to analyze rapid perceptual decisions. Linear classi-
fiers using about 1 s of data can determine with high accuracy
( 90%) when a subject has seen an object of interest in an image
presented only 50–100 ms [64]. We have been able to distin-
guish between processing of images that contain a face from
images with other objects [65]. We have also used linear classi-
fication to detect when a subject perceived to have made a mis-
take in a rapid perceptual decision task [66]. In Section IV, we
will discuss in detail how linear classification in EEG has been
used to identify the time course and spatial distribution of ac-
tivity associated with perceptual decision-making.

E. Linear Versus Nonlinear Features in EEG/MEG

It is surprising that so much can be accomplished by linearly
combining the raw magnitude of fMRI or EEG signals. Basic pre-
possessing methods, of course, are beneficial.3 However, in EEG
and MEG, the time axis does require special consideration, re-
sulting in the use of nonlinear features. In these modalities, the
temporal accuracy of the signal is better than the temporal vari-
ability of the underlying neural processing. Thus, aligning the
time samples from one trial to the next is problematic. This can be
addressed to some degree by locking activity to different external
events such as the time of stimulus presentation or the time of a
behavioral response (see Section IV for an example of this). Al-
ternatively, one can aim to find a signal that is not locked in time.
By this, we mean that the signal has no consistent sign but instead
oscillates at some frequency with arbitrary phase. Therefore, in-
stead of analyzing magnitude, a linear property of the signal,
one will analyze power, a second-order feature of the signal.

Powers—or, more often, log-powers—are computed using
Fourier or wavelet analysis. Essentially, the samples in time are
converted into time-frequency samples, resulting typically in the
same number of independent degrees of freedom. Traditional
analysis has identified various relevant frequency bands such
as the alpha band (8–12 Hz) and the gamma band (25–50 Hz),
among others. In EEG, the power in the alpha band is very pro-
nounced, and it has been found to decrease with the active en-
gagement in a task and increase with active inhibition of unat-
tended stimuli [67]. Single-trial classification of power in the
alpha band has been used successfully to control the movement
of a pointer on the screen in two dimensions (left versus right
and up versus down) [48]. Gamma-band activity has often been
associated with perceptual processing [68], but gamma oscilla-
tions are often transient and more localized in space, and thus
harder to detect.4

3In fMRI and MEG, usually activity is first corrected to account for head
motion and in fMRI activity is sometimes filtered in time to account for the slow
hemodynamic response. For EEG, the data are filtered to remove slow drifts (�1
Hz) and power-line inductive noise (60/50 Hz).

4Fast oscillations are spatially more localized, presumably because fast firing
can only be coherent for smaller neuronal populations. Thus the approach of
spatial averaging as outlined here may not improve SNR significantly. Gamma
activity is typically also more transient in time, and thus trial averaging will
require many more samples unless the transient oscillations are induced reliably
at a given point in time.
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Other nonlinear features include autoregressive (AR) model
parameters that capture the shape of the power spectrum. AR
coefficients are popular in brain–computer interface (BCI) re-
search, as they give a low-dimensional parametrization of the
entire spectrum without committing to any preconceived notion
of a relevant frequency band. AR coefficients have often been
used to classify EEG signals into more than two categories by
comparing the coefficients to prototypes from various categories
[49]. EEG signals have also been classified into more than two
categories (in this case, spoken words) by reducing the time
course of the evoked EEG activity into its strongest sinusoidal
components [69]. Other popular nonlinear features are various
coherence measures, power modulation, and more fanciful non-
linear features, such as various entropy and information mea-
sures, fractal dimension, Lyapunov exponents, etc. While some
of these parametrizations are rather popular, in particular AR
coefficients, they have not found the universal applicability of
simple power measures of various frequency bands.

F. Decoding Using a Forward Model

Direct decoding as outlined above is often limited by the
number of categories they can recover—in most cases, just two.
To study cognition, it may be necessary to identify more than
binary categories, and certainly in perception, continuous stim-
ulus properties are of great importance. An alternative approach
to direct decoding is to build a “forward model,” that is, a model
that predicts brain activity that will be evoked by a given stim-
ulus. One can then compare the predicted activity to that previ-
ously generated by various stimuli and identify the stimulus as
the one that is closest to the prediction.

To identify a significant number of categories with this ap-
proach, one requires techniques that can predict brain signals
with sufficient accuracy. In fMRI, this approach has allowed
identification of thousands of categories [59]. However, this has
required significant knowledge of the stimulus domain, which
is perhaps not surprising, as one has to replicate the highly non-
linear mapping from the stimulus domain to the response of the
brain. Typically, stimuli have to be decomposed into rele-
vant features—say, represents the th feature for the
th stimulus. In [70], for instance, images are decomposed into

local signal power at multiple scales and multiple orientations.
These features are then combined linearly to predict the activity
of individual voxels in the brain

(2)

Aside from reconstructing the activity associated with im-
ages, this technique has also been used to predict brain activity
associated with the meaning of nouns [71]. To do so, noun words
were represented by 25 semantic features quantifying the re-
lationship of the word to various senses such as “see,” “hear,”
“taste” or actions such as “run,” “push,” “enter,” and so on). In
this case, the feature value quantified the average distance of
the stimulus word to the feature word within a large corpus of
written text. With this technique, it was possible to identify 60
different new nouns such as “airplane” or “celery.” Evidently,
the feature set used here is extremely complex and required

a strong hypothesis as to the relevant feature dimensions. The
value of the prediction approach outlined here lies precisely in
its ability to validate scientific hypotheses as to the relevant di-
mensions the brain uses to encode information.

G. Regularization and Generalization

A central challenge of the decoding and prediction problems
in (1) and (2) is to constrain the large number of free coeffi-
cients and . Regularization refers to the general problem
of constraining or reducing the effective number of degrees of
freedom in a parametrization or regression task.5 Without regu-
larization, the degrees of freedom are severely underconstrained
given the large size of the feature space, or more, and
the small number exemplars, typically or less. Var-
ious techniques for regularization have been developed in the
machine-learning community to address this problem, and they
will only be broadly categorized here. All techniques essentially
rely on various prior assumptions about the classification or pre-
diction problem.

1) Finite Noise: Finding a good classifier or predictor often
involves minimizing a cost function, which quantifies the er-
rors in prediction or classification. Regularization often involves
adding to this cost function an extra “penalty term,” which gives
preference to some parameter values over others. For instance,
a quadratic penalty term will assign a cost to
the nonzero coefficient, so that reducing the cost will reduce
the coefficient to zero unless the training data provide sufficient
evidence that a specific coefficient is really required. Penalized
logistic regression [56] and ridge regression [72] use this tech-
nique. quantifies the norm of the weight vector; hence it is
also called norm regularization. In LR, the norm regular-
ization is particularly useful: LR models the transition from one
class to the other as a sigmoid logistic function. The norm of
the weight vector corresponds to the sharpness of this transition
boundary. Thus, penalizing the norm limits the sharpness of the
transition boundary. This, in effect, implements the assumption
that the data carry some noise even in the case that the training
samples are perfectly separable (which is always the case be-
cause ).

2) Smoothness: If one can assume that the activity in neigh-
boring samples is similar, then it is reasonable to assume that
the corresponding weights should be similar as well. It is easy
to incorporate such neighborhood relationships into a quadratic
penalty term by defining the corresponding expected covariance
matrix for the weights as and then incorporating this co-
variance in the norm as (see, e.g., [73]).

3) Sparseness: The problem with a quadratic penalty term,
however, is that large coefficients are penalized more than small
coefficients, and so the solutions will favor a distributed rep-
resentation with many small values. Alternatively, one can use

as penalty, which implicitly assumes that weights
are sparse, i.e., most weights are zero or very small with a few

5Note the opposing uses of this word. In statistical testing, “degrees of
freedom” refers to the number of independent measurements minus the number
of parameters that have been fit to the data. Instead, in the context of parameter
fitting and machine-learning, “degrees of freedom” stands for the number of
free parameters that are to be constrained by the measurements. We prefer the
latter use of the word.
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very large values. Sparse priors and LASSO techniques [74] use
this approach. This will encourage extraction of more localized
activity and will ignore samples that do not contribute signif-
icant predictive/discriminant activity. Smoothness constraints
are difficult to implement for sparse priors. Instead, in cases
where different samples are expected to behave similarly, one
can enforce constrain using sparse penalty terms that apply to
groups of coefficients together (such as the group-LASSO tech-
nique [75] or elastic nets [76] with combine L1 and L2 norms).
One should note that various feature selection algorithm exist
that conceptually aim to do the same thing as sparse priors,
i.e., select a few dimensions that will contribute significantly
to the classification while giving all other features zero weight.
We recommend to use sparse priors as a more systematic and
modern approach to perform feature selection.

4) Factorized Parametrization: An alternative approach to
regularization is to parametrize the weight vector with a smaller
number of free parameters. For instance, one might assume that
in EEG or MEG, the time and space axis are independent. If
that is the case, then the weight vector can be factorized as a
bilinear model with parameters instead of (where

is the number of samples in time and the number of elec-
trodes) [73]. If there are more than two dimensions to organize
the weight vector (for instance, there may be an additional fre-
quency dimension), one can use more complex factorizations
such as the PARAFAC model [77]. These models can lead to a
drastic reduction in the number of degrees of freedom, thus re-
flecting rather strong assumptions on the parameter space that
have to be well justified.

5) Spatial Components: An additional approach to reducing
the dimensionality of the problem is to combine spatial dimen-
sions into a subspace and then perform linear classification
or prediction within that subspace. The most notable of these
approaches are common spatial pattern (CSP), independent
component analysis (ICA), and principal component analysis
(PCA). CSP combines electrodes linearly such that the re-
sulting aggregate signals have maximal or minimal power for
two conditions, respectively [56]. These powers are then used
as features for classification. CSP therefore uses information
about the two different classes to combine electrodes into
some optimal spatial components. ICA and PCA, in contrast,
combine signals linearly without class information based on
other statistical criteria [56]. These techniques may be useful in
neuroimaging studies that have an insufficient number of labels
or simply lack labels for categorization.

IV. IDENTIFYING THE NEURAL CORRELATES OF

DECISION-MAKING USING MULTIVARIATE SINGLE-TRIAL

ANALYSIS OF EEG AND/OR FMRI

A. Single-Trial EEG Reveals Temporal Evolution of
Decision-Making

One of the first studies to use single-trial analysis of the
EEG to explore the temporal characteristics of perceptual de-
cision-making in humans was by Philiastides and Sajda [65].
Motivated from previous work in primates [4], [7], we quan-
tified the relationship between neural activity and behavioral
output during a simple “face”/“car” decision-making task. The

difficulty of the task was manipulated by changing the spatial
phase coherence of the stimuli in a range that spanned psy-
chophysical threshold.

Using the LR approach (see Section III-C) for different time
windows and phase coherence levels, we identified two EEG
components whose single-trial amplitudes discriminated max-
imally between faces and cars [Fig. 2(a)]. The early compo-
nent was consistent with the well-known face-selective N170
[78]–[82], and its temporal onset appeared to be unaffected by
task difficulty. The late component ( 300 ms after the stimulus)
systematically shifted later in time and became more persistent
(i.e., broader) as a function of task difficulty. Both of these com-
ponents indexed decision accuracy in that a high magnitude dis-
criminator output value indicated an easy trial, while values near
zero indicated more difficult decisions.

To compare neuronal to psychophysical performance, we
constructed neurometric functions by considering the data in
the early and late time windows. Specifically, receiver operating
characteristic (ROC) analysis was used to quantify the discrim-
inator’s performance at each phase coherence level. The area
under the ROC curves was plotted against the corresponding
phase coherence levels to construct the neurometric functions.
We showed that the neurometric curves were good predictors
of behavioral performance as captured by the psychometric
function [Fig. 2(b)]. Neurometric functions from the late com-
ponent were a better match to the psychophysical data than
those from the early one. Choice probability analysis [7] also
revealed that the late component was a significant predictor of
the content of the subject’s final decision.

Situated somewhere between the early and late components
( 220 ms poststimulus), there was a third component, the
strength of which systematically increased with increasing
task difficulty. This component was a good predictor of the
onset time of the late component. We originally speculated
that this component reflects a top-down influence of attention
on decision-making rather than a mere bottom-up processing
of the stimulus evidence. To substantiate this claim, we ran a
variant of the original behavioral paradigm, where the same
stimuli were colored red or green and the subjects were either
cued to perform a “green”/“red” discrimination or the original
“face”/“car” discrimination [83]. This manipulation allowed us
to vary the difficulty of the task while leaving the stimulus evi-
dence unchanged in order to treat confounding factors relating
to early, bottom-up, processing of the stimulus. For example,
for images with the same overall phase coherence level, we
compared the single-trial amplitudes of the difficulty compo-
nent during challenging face/car decisions with those of trivial
color decisions. We found that the trial-to-trial amplitudes of
the difficulty component were significantly reduced when the
subjects were simply discriminating the color of the stimulus.

This variant of the experiment has also yielded additional
evidence on the role of the early and late components. We
showed that while the early component remained unaffected
by task demands (in that the single-trial amplitudes of this
component to face versus car stimuli remained unchanged
during color discrimination), the late component was largely
diminished when subjects were making a color decision. More
recently, we demonstrated that the late component can also
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Fig. 2. Single-trial EEG components correlating with decision accuracy on our
“face”/“car” categorization task. (a) Discriminant component maps for the early
(�170 ms) and late (�300 ms) components. Trials are aligned to the onset of
visual stimulation (time 0 ms) and sorted by response time (black sigmoidal
curves). Only face trials are shown here. Each row in these maps represents
the discriminator output for a single face trial with the mean of all car trials
subtracted (i.e., � ��� ). (b) Comparison of one subject’s psychometric
function (gray, solid line) with neurometric functions obtained from the early
component (light gray dotted line), the late component (dark gray dotted line),
and a combination of the two (black solid line).

be used to index the quality of evidence used in the decision
process as quantified by the drift rate parameter in a diffusion
model simulation [84]. Specifically, the results showed that
dividing the data from nominally identical stimuli on the basis
of the late-component single-trial amplitudes (but not those of
the early one) produced differences in the drift-rate estimates.
Though trial-to-trial variability in drift rate is often assumed,
prior to this work, there has been no independent way to
measure its neurophysiological correlates.

B. EEG-Informed fMRI Reveals Spatiotemporal
Characteristics of Decision-Making

Despite significant progress made in understanding percep-
tual decision-making in humans using EEG and fMRI in iso-
lation, the spatial localization restrictions of EEG and the tem-
poral resolution constraints of fMRI suggest that only a com-
bination of these modalities can provide a full spatiotemporal
characterization of this process.

One way this fusion could be achieved is by simultaneous
EEG/fMRI measurements, where trial-to-trial variability in
EEG components can be used to construct parametrically
modulated fMRI regressors. Major technical challenges for
simultaneous acquisition include 1) removal of large magnetic
field gradients and radio-frequency (RF) pulses used to produce
the MR images from the EEG [85], 2) special EEG amplifier
design to remove the dc components without allowing the gra-
dients to saturate the input stage [86], 3) novel EEG electrode
design to minimize artifact formation [85], [87], 4) removal
of cardiac-related artifacts (ballistocardiogram) [85], [88], and
5) removal of motion artifacts in the EEG, which are usually
amplified when subjects are placed in an MR scanner [89]. Our
group has overcome most of the technical difficulties outlined
above and has been able to develop a truly simultaneous EEG
and fMRI recording system [54], [90]–[94], which includes
novel signal processing for artifact removal [95] and a discrim-
inant-based multivariate analysis framework for integrating
single-trial variability of EEG with fMRI [54].

Specifically, we perform single-trial discrimination to iden-
tify task-relevant components , with indexing the time
window of interest [Fig. 3(a)]. The discriminator output will
have dimensions , where is the total number of training
samples and the total number of trials. Finally, to achieve
more robust single-trial estimates for , we typically average
across all training samples to obtain

(3)

where is used to index trials and training samples. Hypo-
thetical single-trial discriminator amplitudes can be seen in
Fig. 3(b). can then be used to construct parametric fMRI
regressors for each component of interest [Fig. 3(c)]. These in
turn are convolved with a prototypical hemodynamic response
function [Fig. 3(d)] in order to be used as fMRI data predictors
in the context of a general linear model (GLM). Identifying the
brain regions that correlate with each of these regressors can
enable a more comprehensive characterization of the cortical
network involved in different neurocognitive processes. We
have already evaluated our system for yielding unique and
meaningful single-trial activations in a simple auditory oddball
task [54] and are currently in the process of using the system
for perceptual decision-making paradigms.

In the absence of simultaneous EEG/fMRI measurements, an
EEG-informed fMRI approach can be used instead. In this case,
the neural characterization proceeds in two steps. Initially, an
EEG study is performed to identify components of interest. The
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Fig. 3. EEG-derived fMRI regressors. (a), (b) The discriminator output (D.O.)
is to used to acquire single-trial information for several temporally distinct EEG
components. (c) The onset time and duration of each of the regressor events are
determined by the onset time ��� and duration ��� of the EEG components.
The amplitude of each regressor event will be based on the output of the linear
discriminator � as defined in (3). (d) EEG-derived regressors are convolved
with a canonical hemodynamic response function prior to the GLM analysis.

discriminator output associated with each component and each
experimental condition is then averaged across trials

(4)

where once again is used to index the component (time) of
interest and is used to index the different experimental condi-
tions. In a second step, the same experiment is repeated while
fMRI data are collected. The average discriminator output per
component and experimental condition obtained from (4) will

Fig. 4. Spatiotemporal processing timing diagram resulting from an EEG-in-
formed fMRI analysis. Color bar represents z-scores for each signature (cor-
rected for multiple comparisons). (Adapted from [102].)

now be used to model the fMRI data. Importantly, is now a
scalar—that is, in the absence of single-trial information during
the fMRI session, all like trials will be modeled in the same
way. Though intertrial variability is ultimately concealed in this
formulation, important information regarding the localization of
each of the EEG components, that would otherwise be unattain-
able using EEG or fMRI alone, can now be obtained.

To demonstrate the efficacy of this approach, we applied
this methodology for the perceptual decision-making work
presented in the previous section, where different EEG compo-
nents were found to respond uniquely to different experimental
manipulations/conditions. That is, all EEG-derived regressors
from (4) were uncorrelated, a requirement that every sensible
fMRI experimental design should satisfy.

As highlighted in the previous section, the strength of our
early EEG component was proportional to the stimulus evidence
(i.e., stronger for easy than hard trials), and it remained un-
changed during the face/car and color discriminations. The late
EEG component also responded proportionally to the stimulus
evidence during the face/car discrimination, but it was stronger
across all difficulty levels relative to the early one. Unlike the
early component, however, it was virtually eliminated during the
color discrimination. In contrast to both the early and late com-
ponents, the strength of the difficulty component was inversely
proportional to the amount of stimulus evidence (i.e., stronger
for hard than easy trials).

As a result of these observations, we repeated this experiment
in the scanner; and using (4), we constructed three parametric
fMRI regressors, one for each of the early, difficulty, and late
components. To modulate the heights of the corresponding re-
gressor events, we estimated the relative strengths of our com-
ponents with respect to the difficulty (i.e., low [L] versus high
[H] coherence) and the type of task (i.e., face versus car [FC]
or red versus green [RG]) (i.e., , , , ,

early,difficulty,late ).
Fig. 4 summarizes our results. For the early component, we

identified significant correlations with activity in areas impli-
cated in early visual processing of objects/faces such as the
fusiform face area (FFA), the superior temporal sulcus (STS).
Both the FFA and STS have previously been implicated in early
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visual processing of faces using neuroimaging [34], [96]–[98]
and field potentials recorded directly from the cortical surface
[99]–[101]. These results implicate the early component in early
visual processing of the incoming sensory evidence.

The difficulty component, correlated with activity in brain
regions that are typically associated with the human attentional
network such as the supplementary and frontal eye fields, the
anterior cingulate cortex, the DLPFC, and the anterior insula [1],
[32]. These observations support the hypothesis that there exists
an attentional control system that exerts top-down influence on
decision-making.

Finally, we found activations correlating with the late compo-
nent in the lateral occipital complex (LOC) and in the right ven-
trolateral prefrontal cortex (rVLPFC). Aside from its involve-
ment in object categorization [103]–[107], the LOC has been
implicated in “perceptual persistence” [108], [109], a process
in which a percept assembled by lower visual areas is allowed
to remain in the visual system, via feedback pathways, as a form
of iconic memory [110]–[112].

The brief stimulus durations used in these experiments sug-
gest that perceptual persistence is a likely mechanism by which
rapid object decision-making takes place. That is, for brief pre-
sentations, the accumulation of evidence is not based on the de-
caying stimulus traces themselves but rather on a durable rep-
resentation of the stimulus retained in short-term memory. This
interpretation explains why the late component was a better pre-
dictor of overall behavioral performance than the early one, why
it correlated strongly with drift rate in a diffusion model simula-
tion, and why it disappeared when a demanding face versus car
discrimination was no longer required (e.g., during color dis-
crimination).

Taken together, these results reaffirm that the EEG-informed
fMRI approach is a promising new tool in mapping out the
spatiotemporal characteristics of different neurocognitive pro-
cesses, such as perceptual decision-making, in humans.

V. CONCLUSION

Though perceptual decision-making is perhaps rather sim-
plistic relative to the complex decisions we make everyday,
understanding the neural processes governing even the most
simple decisions will shed light on how we make decisions
which involve context, reward and value. It is clear, however,
that a marriage of tools and methods from both neuroscience
and engineering is required in that this undertaking involves
analysis of a tremendous amount of high-dimensional data,
systems for acquiring the data in real-time, and sophisticated
and insightful paradigms for manipulating our behavior and
interpreting the results. In summary, we are just at the beginning
of having the necessary tools and techniques to develop a deep
understanding of how we make a decision—for example, on
whether to read this paper or not.
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