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Abstract—In recent years the number of active controllable
joints in electrically powered hand-prostheses has increased
significantly. However, the control strategies for these devices
in current clinical use are inadequate as they require separate
and sequential control of each degree of freedom (DoF). In this
study we systematically compare linear and non-linear regression
techniques for an independent, simultaneous and proportional
myoelectric control of wrist movements with two DoF.

These techniques include linear regression (LR), mixture of
linear experts (ME), multilayer-perceptron (MLP) and kern el
ridge regression (KRR). They are investigated offline with electro-
myographic (EMG) signals acquired from ten able-bodied sub-
jects and one person with congenital upper limb deficiency.
The control accuracy is reported as a function of the number
of electrodes and the amount and diversity of training data
providing guidance for the requirements in clinical practice

The results showed that KRR, a non-parametric statistical
learning method, outperformed the other methods. However,
simple transformations in the feature space could linearize the
problem, so that linear models could achieve similar performance
as KRR at much lower computational costs.

Especially ME, a physiologically inspired extension of linear
regression represents a promising candidate for the next gener-
ation of prosthetic devices.

Index Terms—Electromyography, regression, prosthetic hand,
robust control.

I. I NTRODUCTION

In recent years there have been substantial advances in
constructing electrically powered hand prostheses that could
perform complex movements involving many simultaneously
controlled degrees of freedom (DoF), including independent
finger movements [1], [2]. However, so far there exists no
electro-myographic (EMG)-based controller that can extract
the required control information needed to make full use of
these prostheses. Clinically available controllers are based on
very simple techniques that control only one DoF at a time.
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Multiple dimensions have to be controlled sequentially, re-
quiring slow and cumbersome mode-switching initiated by co-
contractions. Significant research has been devoted to directly
control many DoFs with classification based approaches (see
e.g. [3] for a recent review). The reported accuracy of recent
approaches is very high and also robustness issues under
real world conditions have been addressed [4], [5]. Yet, most
classification based approaches control only one function at
a time, precluding intuitive control of smooth movements.
Recent efforts have also extended the classification into more
than one class (movement) at a time [6], [7]. However these
approaches still limit the type of movements because the
speed of the related DoFs cannot be controlled independently
if two functions are activated at the same time. Conversely,
natural movements can only be achieved with independent
proportional control of the related DoFs.

To achieve an independent proportional and simultaneous
control, regression techniques can be applied. The major dif-
ference to classification is that a regressor does not decidefor a
certain class but instead a continuous output value is estimated
for each DoF. This allows for anindependentsimultaneous and
proportional estimation and can facilitate a fluent and natural
control, given a good regression performance. Lacking of this
natural control is indeed one of the main limitations of the
current myoelectric control approach based on classification
[8].

Relative little work has been done on this in the context
of myoelectric control, mostly focusing on multilayer per-
ceptrons (MLPs) for regression ([9], [10], [11]). This study
aims at a comprehensive and systematic comparison of state-
of-the-art regression methods for independent proportional
and simultaneous myoelectric control of multiple DoF. We
compare simple linear models with state-of-the-art non-linear
and non-parametric machine learning methods. For a clinical
application, a method should require little user training,be
computationally efficient and also perform well with few
electrodes. Those aspects are addressed as well in the present
study by reducing the amount of training data, reducing the
number of EMG channels and by evaluating the processing
times of the algorithms.

A major challenge for regression methods in myocontrol is
to obtain accurate movement and force data for training in the
absence of the missing limb. Jiang et al. [12] approached this
problem by applying a semi-supervised algorithm, where only
information about the active DoF and desired direction are
needed to learn the relationship between muscle forces and
EMG features. This approach can only exploit training data
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with individual DoFs active. Nielsen et al. [9] investigated
a bilateral training strategy that can be applied for unilateral
amputees who represent the majority of hand prostheses users.
The subjects performed bilateral mirrored contractions and
the forces were estimated from EMG signals using artificial
neuronal networks trained with force labels from the contra-
lateral hand. Muceli [10] and Jiang [11] showed that it is also
possible to estimate wrist angles instead of forces performing
free dynamic movements from EMG with neuronal networks
using this contra-lateral training strategy.

Most studies on simultaneous myoelectric control used the
variance of the EMG (also denoted as mean square value
or band power) [12], [11] or, similarly, the lowpass-filtered,
down-sampled squared raw EMG-signal [10]. Nielsen et al.
([9],[13]) discovered that other features, like the time domain-
feature set (mean absolute value, zero-crossings, slope sing
changes, waveform length) perform significantly better than
the variance.

In this study we demonstrate that the relationship between
the variance and the wrist angle is highly non-linear and
that simple transformations in feature space can simplify
the problem. This allows to use linear methods, which are
computationally efficient. We compare four linear and non-
linear regression techniques, namely, linear regression (LR),
mixture of linear experts (ME), multilayer perceptrons (MLPs)
and kernel ridge regression (KRR). To our knowledge, KRR
and ME have not previously been applied to myoelectric con-
trol. This comparison provides an evaluation of the potential
use of EMG for simultaneous and proportional control and
indications on the main factors of influence for regression
performance.

II. M ETHODS

A. Experimental Setup

This study involved ten able bodied subjects (3 females,
7 males, age 19-30) and one person with congenital upper
limb deficiency (male, age 39) performing a series of wrist
movements. Accurate data labels were gained by tracking the
wrist angles with a motion tracking system (Xsens with MTx
sensors, Fig. 1b). EMG was recorded with a high density 192-
channel electrode grid (ELSCH064NM 3-3, OT Bioelettro-
nica, 8 x 24 channels, 10 mm inter-electrode-distance) in a
monopolar configuration. The electrode array was placed on
the proximal portion of the left forearm, covering a range of
8 cm. The biosignal amplifier was a 12 bit ”OT Bioelettron-
ica EMGUSB-2”, configured to a sampling rate of 2048Hz.
The reference electrode was a disposable Ag/AgCl electrode
placed on the elbow. Ground was formed by an electrode
band placed at the distal end of the forearm. Synchronization
between kinematic and EMG signals was performed offline
via a square-wave synchronization signal provided by the
motion tracking system that was recorded as an additional
(auxiliary) channel. Previous studies involved all three DoFs
of wrist contractions. In this study we focus only on two DoFs,
namely, flexion/extension and radial/ulnar deviation (Fig. 1 a).
This restriction helped to prevent long recording times and
difficulties with recording stability (pronation/supination can
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Fig. 1. Experimental setup: (a) Subjects were instructed tofollow radial and
circular trajectories (dashed and dash-doted lines). Coordinates spanned by
the two wrist anglesy and in polar coordinates (r and θ). (b) placement of
electrodes and motion sensors. (c) feedback during recording.

lead to shifting of muscles relative to skin and electrodes in
able-bodied subjects – it is not known if this complication
occurs in persons with limb deficiency).

The target movement trajectories (Fig. 1a) included moving
the wrist in 16 (radial) directions, and drawing circles of
two different diameters (clockwise and counter-clockwise).
The subjects were instructed to keep the fingers in a relaxed
position and not to rotate the wrist (keeping the thumb pointing
upwards). At the beginning of each session, the individual
range of motion in both DoFs of the subject was measured.
The experimental paradigm was calibrated in such a way that
the radial trajectories would start at the center (rest position)
and reach the maximal range of motion for each direction.
The circular trajectories were located at 90% and 60% of the
maximal range of motion. The time from the center position to
the maximal position was 3 s, followed by 2 s at the maximal
position and 3 s for returning to the center position. The
time for a full circular trajectory was 10 s. The completion
of one trajectory will be referred in the following as a trial.
The experiment was divided into several runs, where each run
contained each type of trajectory (16 radial and 4 circular
trials) exactly once. During the recordings, the target wrist
angles were displayed on a computer screen together with the
actual angles obtained by the motion tracking system (Fig. 1c).
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This online feedback assisted subjects in better matching the
target trajectories. Six able bodied subjects and the subject
with congenital deficiency performed 15 runs and 4 subjects
stopped after 10 runs because of fatigue. The time to record
one session with 15 runs was about one hour plus another hour
for placing the electrodes and motion sensors and familiarizing
with the system.

To investigate the transferability of the results to the contra-
lateral training strategy, for five of the ten subjects motion data
was recorded from both sides while the subjects performed
bilateral mirrored movements [9]. This allows for comparing
the performance of ipsi-lateral training (motion data fromthe
EMG side were used as training labels) with contra-lateral
training (motion data from the other side were used as training
labels). The contra-lateral training is relevant, particularly for
future applications in uni-lateral amputees, where motiondata
can only be obtained from the intact side. The feedback for all
able bodied subjects was given for the EMG side. An example
of the recorded motion data is shown in figure 2.

To prove that the applied methods are also suitable for
users of upper limb prostheses, we included one subject with
congenital deficiency. The subject’s forearm terminates atthe
wrist level. This subject performed also bilateral mirrored
contractions. The EMG signals were recorded from the side
with deficiency (right side) and the motion data were obtained
from the contra-lateral side with intact limb. All experiments
were in accordance with the declaration of Helsinki and were
approved by the local ethics commission. (Ethikkommission
d. Med. Fak. Göttingen, approval number 8/2/11)
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Fig. 2. Motion traces obtained by the motion tracking system(in degree)
for both types of trajectories. The motion signals form the data labelsy(t)
used to train and test the regressors.

B. Preprocessing

The data were filtered using a 4th order Butterworth high-
pass filter (fc = 20Hz) to remove movement artifacts, a
lowpass (fc = 500Hz) to remove high frequency noise
and a 50 Hz comb filter to remove power-line interference,
including harmonics. Sample-wise common mean subtraction
was performed to remove correlated noise and distortion that
might be caused by activity at the reference electrode.

C. Feature Extraction

The features were extracted from non-overlapping intervals
of 200 ms. This window duration is within the acceptable time
delay between user command and prosthesis action [14],[15].

To obtain good estimation results when using linear methods
the relationship between the features and the target labels
(i.e., the motion data) should be as linear as possible. As
the first feature we choose thevariance. As we will show
in section III-A, the variance is increasing monotonicallywith
the deflection of the wrist in any direction, but the relationship
between deflection andvariance is not linear (see Fig. 3a
). Therefore, we investigated two non-linear transformations,
f(x) =

√
x and f(x) = log(x), to linearize the relationship

between EMG and wrist angle. The transformed features are
denoted by rms and log-var, respectively. All dimensions
in feature space were normalized to have on average unit
variance. This is useful for methods with parameters that
depend on the numerical range of the features. The scaling
factors were calculated based on the training data sets only.

D. Regression Models

The set of C dimensional feature vectors forT time
instances is given asX ∈ RC×T , and Y ∈ RD×T contains
the corresponding wrist angles forD DoFs as data labels.
The goal of all regression techniques is to find a mapping
Ŷ = f(X), whereŶ is an approximation ofY.

1) Linear Regression (LR):In LR [16], [17] this mapping
function is linear:

Ŷ = W⊤X + w0 (1)

whereW ∈ RC×D contains the weight vectors andw0 the bias
that can compensate for possible offsets. By conventionw0 is
included inW, thus extendingX by an additional dimension
including T ones.

The least mean squares solution for equation 1 including
regularization is obtained by minimizing the following error
function:

err(w(d)) =
1

2

∑

T

[y(d)(t)− w(d)⊤x(t)]2 +
λ

2
w(d)⊤w(d) (2)

The closed form solution is given by:

W = (XX⊤ + λI)−1XY⊤ (3)

whereI is the identity matrix and the regularization constant
λ is optimized by grid-search in a nested cross-validation (sec.
II-E).

2) Mixture of linear experts (ME):In LR each column
vector w(d) of W is responsible for the mapping fromX to
one DoF inY. This means that in LR the same coefficients
are used for both antagonistic wrist movements which is phys-
iologically not reasonable, since the antagonistic movements
involve different muscles.

Therefore an extension of LR was applied which uses two
different weight vectorsw(d+) andw(d−) for each DoFd that
are individually trained using only time intervals with positive
or negative labels, respectively. The outputs of both filters
are combined smoothly according to the probability to which
direction the current feature sample belongs to, estimatedby
penalized logistic regression (PLR) [18], [17]:

ŷd(t) =

[
w(d+)

w(d−)

]⊤ [
x(t) pd(t)
x(t) (1− pd(t))

]
(4)
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With

pd(t) = σ (βd
⊤x(t)) (5)

σ(s) = es

1+es is the sigmoid function and the coefficientsβd

are obtained by iterative reweighted least squares. The penalty
term of PLR and the regularization parameterλ of the LRs
are optimized in a nested cross-validation (sec. II-E).

For a steep sigmoid function the model can be seen as piece-
wise linear with some smoothing around the origin. In this
article we will refer to it as a linear method, even though this
is not correct in a strict sense.

3) Multilayer perceptrons (MLPs):MLPs have been often
used in the present context [9], [10], [17] and will be analyzed
here for comparison. Each DoF was estimated by an individual
network. Each MLP had one hidden layer with sigmoidal
transfer functions and a single output neuron with linear
transfer function. The number of inputs were defined by
the dimensionality of the feature space (i.e 192 for the full
channel-set).

The number of hidden neurons in each MLP was optimized
with cross-validation. A grid search on a range between
one and 20 hidden neurons per DoF have shown that the
performance did not increase with more than three neurons
and decreases when using more than eight neurons. Similar
results were also reported by other studies ([9], [10]). Thus
we fixed the number of hidden neurons to three per DoF.

The MLPs were trained with the Levenberg-Marquardt
back-propagation algorithm. All MLP training was imple-
mented with the Matlab neural network toolbox. In previous
studies where MLP were applied with a high number of
features, the dimensionality of the feature-space (and thus
the number of network inputs) was reduced using principal
component analysis (PCA) [10], [19]. The number PCA
components was defined by a threshold on the fraction of
variance captured by those components. This can speed up the
training of the MLPs but leads to a reduced performance. For
a fair comparison with the other methods no dimensionality
reduction was applied in this study.

4) Kernel Ridge Regression (KRR):Another simple but
powerful non-linear regression method iskernel ridge regres-
sion. In KRR the same error function as in LR is minimized.
The decisive difference to LR is that the error function is not
minimized in the input space of the data. Instead the data inX

is mapped through a (potentially non-linear) mappingφ into
a kernel feature space. Applying the kernel trick [20], [21],
[22], [23], [24] this mapping does not have to be computed
explicitly. The kernel trick is based on akernel functionk(., .)
that takes two data points as arguments and computes the inner
product〈., .〉φ in the kernel feature space

k(x(i), x(j)) = 〈φ(x(i)), φ(x(j))〉φ . (6)

In this study we used a Gaussian kernel function

k(x(i), x(j)) = e−(x(i)−x(j))2/σ, (7)

whereσ is the width of the Gaussian kernel function. Given
a fixed data setX ∈ RC×T = [x(t1), x(t2), . . . , x(tT )] the
kernel function is evaluated for each pairx(t = i), x(t = j) of

data points; the output of the kernel functionk(x(t = i), x(t =
j)) is then stored in theKij th entry of thekernel matrixK.
The essence of the kernel trick is that one can express the
prediction of the target labelŝy(T+1) as a linear combination
α of the similarity in kernel feature space between the new data
pointx(T+1) and all training data pointsx(1), x(2), . . . , x(T )

ŷ(T + 1) =
T∑

t=1

k(x(T + 1), x(t))αt. (8)

The so calleddual coefficientsα can be computed by inverting
the kernel matrix and multiplying each column with the
respective label

α =(K + Iλ)−1y, (9)

whereI denotes aT ×T identity matrix andλ is a regulariza-
tion constant. For a detailed review of kernel ridge regression
see e.g. [17], [25].

The hyper-parametersσ andλ have to be optimized using
appropriate model selection techniques. We used a grid search
in the inner fold of a nested cross-validation to find optimal
parameters (sec. II-E).

E. Cross-validation

To evaluate performance, five-fold cross-validation was ap-
plied. The folds were formed by entire runs. This was done
in order to keep training and test set not only disjoint but
as independent as possible [26] and to guarantee a balanced
appearance of movements within both sets.

The performance was in all cases evaluated on test sets
including all trajectory types. Training was usually also done
with all trajectory types; only the results shown in figure 8
were based on training with subsets of trajectories.

As a performance metric we used the r-square value [27]:

r2 = 1−
∑

dVar(y
d − ŷd)∑

dVar(y
d)

(10)

whereyd is the wrist deflection angle of thedth DoF, measured
by the motion tracking system, and̂yd its estimate predicted
by the models. The numerator is the mean squared error,
which is normalized by the variance of the correct labels in
the denominator. Thus, the r-square value is not influenced
by the numerical range of the labels. The maximal r-square
value at perfect estimation is one. Note that also negative r-
square values are possible for estimation errors larger than the
variance of the targets.

For methods with parameters that have to be optimized, a
nested cross-validation was applied. I.e. with the training set
of each fold, a second (inner) cross-validation was done to
determine the performance for a certain parameter configura-
tion. This inner cross-validation was repeated for a number
of parameter configurations and the best configuration was
used to train the algorithm for the outer cross-validation [21],
[26]. The reported performance was measured on the test
sets of the outer cross-validation, which was not used to
determine the parameters. Simply repeating a normal cross-
validation with different parameter settings would lead toa
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wrong performance estimation, since the parameters would
over-fit to the test data sets.

A typical session with 15 runs contained 14700 feature
samples whereof 11760 were used in each outer fold for
training and parameter optimization and 2940 for testing. For
the investigations in section III-D the training sets where
reduced while the testing-sets were kept unchanged.

F. Amount of training data

All presented methods need data to learn the relationship
between EMG featuresx(t) and labelsy(t). For a clinical
application the amount of training data required for calibrating
the controller is an important factor because it determinesthe
time to fit the prosthesis. To the best of our knowledge it
was never explored in a systematical way how much data
is needed for a proper model fitting. The influence of the
amount of training data was investigated in two ways. First,by
decreasing the training data set of each fold within the cross-
validation by entire runs. Second by removing training-trials
corresponding to certain trajectory-types within each runby
defining the following subsets:

a) all trajectories (20 trials per run)
b) all radial trajectories (22.5◦ steps, 16 trials per run)
c) half of radial trajectories (45◦ steps, 8 trials per run)
d) quarter of radial trajectories (90◦ steps, 4 trials per run)
e) all circular trajectories (4 trials per run)

Both ways were combined and for a fair comparison the
total number of training samples was logged. The aim of this
investigation was to assess if it is better to reduce the density
of combining the DoFs or to reduce the number of repetitions
if the time for collecting training data is limited.

If the feature space is also linear with respect to the DoFs
(i.e., if the features sum when activating more than one DoF
at a time) we would expect that it is not necessary to train
with all trajectories. Conversely, if this linearity does not
occur, eliminating trajectories would negatively impact the
performance.

III. R ESULTS

A. Effect of feature transformation

Figure 3 illustrates the linearization of the feature spaceand
the impact on the estimation by LR. Since it is impossible to
visualize the relationship between the labels and the feature
space in full dimension, the features were averaged over
all channels:xintensity(t) = 1

C

∑C
c=1 xc(t). Although this

”feature intensity” does not contain enough information for
the regression task, it can give insights to the complexity
of the underlying relationship. The top row (a-c) illustrates
the relationship between wrist inclinationr and EMG feature
intensity. Several trials of the radial trajectories are plotted.
The x-axis shows the distance from center position, the y-
axis shows feature intensity, and different target directions are
distinguished by different colors. The curves are obtainedby
polynomial fitting with a model complexity limited to third
order.

Prediction with variance features:Plot (a) in figure 3
illustrates the nonlinear relationship between EMG variance
and wrist inclination. When estimating the labels with LR, the
predicted wrist angles cannot be modeled well, as depicted in
figure 3d. For wrist angles close to the origin, the predicted
angle is underestimatedwhile at wrist angles far from the
origin, the predicted angles tend to beoverestimated.

Prediction with rms features:The panels in the middle
column of figure 3 show data and results for the square
root of the variance features. Panel b illustrates that the non-
linearity between wrist inclination and EMG features is notas
pronounced as in the case of the variance features in panel a.
This leads to a better prediction, as visualized in figure 3e.

Prediction with log-var features:The results obtained
when taking the log of the EMG variance are depicted in
the panels in the right column of figure. 3. In contrast to the
other two features, the relationship between wrist angles and
EMG log-var is almost linear, as illustrated in panel c. This
leads to a significantly better prediction with less under- or
overestimation at small or large targets as shown qualitatively
in figure 3f.

B. Cross-validation results

The effect of linearization is also seen in the cross-validation
performance measured by the r-square value (Fig. 4).To check
for statistical significance 3-way ANOVA (p = 0.05) was per-
formed. The three factors were regressor, feature and subject.
Subjects 8 and 9 had large negative r-square values (at LR
with var,< −10) and were excluded from the test as outliers.
The full model ANOVA (with all two-way interactions and
the three-way interaction) revealed no significant three-way
interaction (p = 0.98), and two-way interactions including
subject (p = 0.09 with regressor and p=0.11 with feature,
respectively). These interaction terms were pooled and a three-
way ANOVA with only the two-way interaction between
regressor and feature was performed, from which significant
interaction was detected (p < 10−3).

Subsequently, compartmentalized two-way ANOVA tests
were performed by fixing the level of one of the two interacting
factors. When the level of regressor was fixed at LR, ME,
MLP, and KRR, the 2-way ANOVA tests found that feature
was significant (p < 10−3, p < 10−3, p = 0.026, and
p = 0.031 respectively), regardless of the regressor. Post-hoc
Tukey-Kramer tests showed that var was always significantly
worse than log-var in all cases, while rms was never signifi-
cantly different from log-Var. Further, for the two non-linear
methods, rms was not significantly better from var, but log-var
was (Fig. 4a).

When the level of features was fixed at var, rms, and log-
var, the 2-way ANOVA tests found that regressor was not
significant for log-var (p=0.14), while it was significant for var
and rms(p < 10−3 for both cases). Post-hoc Tukey-Kramer
tests showed that, for the var feature, LR was significantly
worse than the other three regressors, ME was significant
worse than MLP and KRR, while there was no significant
difference between MLP and KRR. For the rms feature, LR
was significantly different from MLP and KRR, and no other
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Fig. 3. Visualization of feature intensity (features averaged over all channels) vs. wrist inclinationr for radial trajectories in polar coordinates (a-c). Each
line was obtained by polynomial fitting of the intensities for one direction of wrist inclinationθ. For this illustration, only radial trajectories were usedand the
color of each curve indicates the direction of the trajectory as illustrated in the legend in panel a. The lower panels (d-f) show an example of the estimations
ŷ by linear regression (solid lines) and the true labelsy (dashed lines) for all features. For the log-var feature therelationship between wrist inclination and
feature intensity is almost linear (a) which results in the best estimation (f).

significant different pairs were found. For log-var features, no
significant differences were found among all the regressors.

All in all the linear methods performed significantly worse
than nonlinear methods with variance features. It is very clear
that here the feature transformations had the largest effect.
But even for the non-linear methods MLP and KRR the log-
transformation led to a small but significant improvement.
Because for log-var features all regressors perform equally
well, throughout the rest of this study all results are basedon
the log-var feature.

For the subject with congenital deficiency, the effect of
feature transformation was similar to able-bodied subjects
(Fig. 5). With the log-var feature, the r-square value was0.7
to 0.8, which is almost as good as the average able-bodied
subjects.

C. Contra-lateral training

In order to assess the ability of all methods to be applied to
uni-lateral amputees, we trained each model with the contra-
lateral labels and tested with the ipsi-lateral labels (available
for five subjects, Fig. 6). The performance decreased from
approximately 0.8 - 0.9 (ipsi-lateral training, upper panel) to
0.6 - 0.7 (contra-lateral training, lower panel) for four subjects
and to 0.3 - 0.4 for one subject. This is to be compared to the
reproducibility of the left and right hand mirror movements

(black lines in Fig. 6, lower panel). Evidently the performance
drop is largely a result of the inability of the subject to perform
exact mirror movements.

D. Impact of reduced training data

For a clinical application a method should be calibrated with
as few training data as possible and generalize from a small
amount of training data to as many possible motor actions as
possible. We quantified the generalization performance of all
methods by successively reducing the amount of training data
and the regions in data space from which training data was
obtained. These results are based on the six subjects for whom
15 runs are available.

1) Reduction by runs:As expected, performance decreases
when the amount of available training data is reduced (Fig.
7). KRR and ME and LR are similarly robust to a reduction
in data set size, whereas the MLP does require a large set of
examples.

2) Reduction by runs and trials per run:The cross-
validation performance of a combined reduction of the number
of training-runs and the types of motor actions performed
within each run are shown for the ME in figure 8 (similar
results were obtained with the other regressors). The perfor-
mance depends mainly on the amount of training data. When
enough sample are used (e.g. more than 1500) the type of
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Fig. 4. Mean cross-validation performance of ipsi-lateraltraining for all
features and regressors. The error bars indicate standard deviation and the
lines with stars above the bars mark cases that are significantly different
(p = 0.05). In cases when the line ends in between two bars both are meant.
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Fig. 5. Cross-validation performance for a subject with congenital deficiency,
trained with contra-lateral motion data. Error bars indicate inter-fold standard
deviation. The effect of feature transformations is the same as for able-bodied
subjects: rms lead to better and log-var to best results for all regressors and
the effect was stronger for linear methods.

training trajectories had no strong influence. Even if only
single DoF were active in training (1/4 radial trajectories), the
regressors performed still very good on the testing data which
included many combined movements. This shows that the
algorithm is able to generalize also to regions ofy for which
no training data was provided. The models can generalize
from a small set of co-activations to various mixtures of
independently combined DoFs. This indicates that the feature
space is also linear with respect to the DoFs.

3) Processing time:As an indication of the computational
load of the algorithms the processing time for training was
measured (Fig. 9a). All processing was done in MATLAB 64
bit, running on a system with a 2.67 GHz processor and 8 GB
of memory. Evidently the LR is exceedingly fast (100 ms
with all data included) thus permitting potential real-time
adaptation. In contrast, the MLP can take substantial amount

of time for training (up to 5 min).
The computational cost for applying the methods is shown

in figure 9b. The time to apply LR, ME and MLP does
not depend on the amount of training data and is very fast
(LR:5 ms, ME:40 ms and MLP:100 ms for the entire test data
of 3000 samples or 600 seconds of EMG data). KRR is a
non-parametric model and needs to access all training data
samples during testing. Testing time for KRR thus increases
with increased training-set and reaches around 2.5 s for the
largest training set (10ms per sample). This, together withthe
memory requirement KRR may make embedded processing
prohibitive.

E. Reduced channel-set

For this study data was recorded with 192 channels. Cost
and power consumption will set limits on the number of
channels that can be used in a clinical prosthetic system.
Therefore we investigate the performance of the algorithms
with reduced sets of 96, 48, 24, 16, 12 and 6 channels
(Fig. 10a) with regular spacing (Fig. 10c). For all methods the
performance increases with increasing number of channels and
saturates at half of the available channels. When the number
of channels is reduced below approximately 12 to 16, the
performance drops abruptly. KRR performs best in all cases
and achieves an r-square value of 0.8 with only 12 monopolar
channels. However, the differences between the methods are
rather small, e.g. the computational cheaper method ME has
with the same number of channels still a median performance
of 0.73.

Similar results were obtained for the subject with congenital
deficiency (Fig. 10 b). The number of channels differs from
figure 10c because the electrode array had to be cut to fit
the size of the residual limb without overlap. Again, KRR
performance was best and a drop in performance below a
certain number of channels was observed (22 channels in this
case).
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Fig. 6. Cross-validation performance for ipsi- (u.) and contra-lateral training
(d.); the decrease in performance form ipsi- to contra-lateral training is ap-
proximately proportional to the ability of the subjects to copy the movements
from left and right wrist as indicated by the black horizontal lines.
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numbers above the curves indicate the number of runs used. 1000 feature-
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Fig. 8. Cross-validation performance for training sets reduced by number of
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the ME. Performance increases with increasing number of training samples
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IV. D ISCUSSION

This study presents a systematic comparison of EMG fea-
tures and control algorithms for simultaneous and proportional
control of a hand prostheses with multiple DoFs. The evalu-
ation scenarios in which the methods were compared, have
targeted aspects that are important for clinical applications.

A. Feature representation

Previous studies have often used variance to capture EMG
activity [12], [11], [10]. However, power (variance) of EMG
increases disproportionately as force increases to achieve ex-
treme wrist inclinations. A simple non-linear transformation
(square root or logarithm) can account for this non linearity
and thus improves performance for all methods tested. This
is particularly true for the linear methods (LR and ME)
which attained with this simple modification a performance
closer to the more complex non-linear algorithms. Opposite
direction of movement engages different muscles. This leads
to an additional non-linearity of the problem as stated here
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Fig. 9. Training and testing time as functions of the training set size

(where direction is indicated by changing sign). The goal of
the mixture of expert technique proposed here was to break
the linear trajectory into two regressors, each specializing into
positive or negative displacements. With this modificationthe
remaining non-linearity is largely addressed and performance
increases to levels comparable to state-of-the-art non-linear
regression algorithms (ME, see section II-D2).

B. Clinical applicability

1) Amount of calibration data:In clinical practice it is
desirable that the controller requires as little calibration data
as possible. Importantly, it should be able to generalize to
movements for which exhaustive training data is not available.
This is particularly important for simultaneous proportional
control with many DoFs, because the amount of data and
recording time increases exponentially if the space of move-
ment is to be uniformly and densely sampled. We found that
dense sampling of all movement directions is not as important
as overall number of training samples. This indicates that
the feature space is also linear with respect to the DoFs.
In practice this means that not all possible combinations
of DoFs are required for calibration, which can reduce the
complexity of the training protocol and thus alleviate the
effort for the user. With approximately 2000 feature samples
(less than seven minutes training data) the ME algorithm
performs already reasonably well. Increasing the recording
time beyond this point provides diminishing returns. With the
current implementation of MLP about 5000 training samples
(more than 15 minutes) are needed to avoid a substantial drop
in performance. However, there exist techniques that could
increase the performance for small training sets [28].

2) Computational costs:The current clinical standard for
fitting the prosthetic device involves a computer to visualize
the EMG signals and configure the parameter settings. Thus,
the computational cost of training is of lesser concern. How-
ever, future devices may aim to adaptively calibrate the device
in real-time in which case efficient learning algorithms area
key requirement. The training times for LR is negligible and
the algorithm is readily converted into a real-time setting. For
the full data set ME and KRR needed almost a minute. But
assuming a reduced data set of 2000 samples which would
still lead to a reasonable performance, ME and KRR could be



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2014 EPUB AHEAD OF PRINT 9

6 12    16  24 48 96 192

0.5

0.6

0.7

0.8

0.9

1

N channels

r−
sq

ua
re

Performance with reduced number of channles

 

 

LR
ME
MLP
KRR

(a) performance of able bodied subjects

5  7 11  15  22 42 79 160
0.2

0.3

0.4

0.5

0.6

0.7

0.8

N channels

r−
sq

ua
re

 

 

LR
ME
MLP
KRR

(b) performance for subject with congenital deficiency

96 Channels 48 Channels 24 Channels

16 Channels 12 Channels 6 Channels

(c) channel-sets

Fig. 10. Reduced channel-sets: (a) Cross-validation performance with
reduced channel-sets for able-bodied subjects (median and25/75 percentiles
across subjects). The performance decreased with the decrease in the number
of channels and dropped abruptly when fewer than 12 to 16 channels were
used. (b) Cross-validation performance with reduced channel-sets for the
subject with congenital deficiency. The results were similar to those from
the able-bodied subjects, but the performance drop occurred when fewer than
22 channels were used. (c) The definition of the channel subsets

trained in less than 5 seconds. To train MLP with 5000 samples
requires approximately 60 seconds which would preclude real-
time adaptation. This could perhaps be mitigated by reducing
the number of channels and more efficient implementations.

The computational costs during execution is critical because
they need to fulfill real-time requirements on an embedded sys-
tem with little computational power. The time to evaluate one
test sample must not exceed a few milliseconds. Therefore the
processing times measured on the machine described in section
III-D3 can only give a rough assessment. The processing
for LR consists only of a single matrix-vector multiplication
and is negligible. ME and MLP consist of several matrix-
vector multiplications and evaluations of sigmoid functions.
This is also possible on a relatively simple system. The
application of KRR involves evaluating the kernel-function

for the test sample with all training data points and a matrix-
vector multiplication with the kernel matrix. Since the kernel
matrix is growing quadratically with the number of training
points, the processing costs and the memory requirements are
very high already for medium training data sets. (e.g. for
2000 data points the kernel matrix has4× 106) entries. This
makes the use of KRR prohibitive with currently available
prostheses hardware. Note that there exist techniques to reduce
the memory requirements and computational costs of KRR
(see e.g. [29],[30],[31]).

3) Number of channels:Because of costs, power consump-
tion and reliability, the number of electrodes for a clinical
application should be as small as possible. Reducing the
number of channels leads to a reduced performance for all
investigated methods. But even with 12 channels the regressors
were still able to estimate the wrist position with an r-square
value of0.7 to 0.8. For the subject with congenital deficiency,
22 channels were sufficient to reach an r-square value of0.6
to 0.7. The number of needed channels may vary significantly
for subjects with limb deficiency depending on the individ-
ual anatomy and capabilities. The channels were selected
arbitrarily with a regular spacing. It is expected that with
automatic channel-selection methods a higher performance
can be reached with even fewer channels. This is important
particularly for potential users of myo-prostheses.

4) Transfer to amputees / training strategy:Contra-lateral
training is one possibility to apply the methods to uni-lateral
amputees. The performance in this case depends on the amount
of residual muscles, the ability of the user to execute the
contractions with his disabled side and the ability to copy
the movements from the intact side. The last factor has been
evaluated in this study with five able-bodied subjects. Our
results suggest that even for able-bodied subjects there isa
large variability in how precise bilateral mirrored movements
can be executed. These results indicate that user training and
feedback will be essential for a successful application of
regression techniques for a simultaneous proportional control
of multiple DoF prostheses. Given good mirror movement
performance, all other results of this study apply to the case
of contra-lateral training. This was shown for one subject
with congenital limb deficiency, whose performance was only
slightly below that of able-bodied subjects. Moreover, the
main findings of our study, including the positive effect of
the feature transformations, were valid also for this subject.
This indicates that our findings may transfer to potential users
of myoelectric prostheses and emphasizes the relevance of this
work.

The experiments in this study are based on 2 DoF, namely,
flexion/extension and radial/ulnar deviation of the wrist.The
latter is not available in current prosthesis hardware. The
muscles for those movements are located close to the skin
leading to good EMG signals and less problems due to skin-
muscle-shifts are expected compared to pronation/supination.
These problems might be a minor issue when applied to
amputees because of different anatomy. However, the control
signals from radial/ulnar deviation can also be used to control
the rotation unit of the prosthesis if this leads to more stable
results.
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C. Linear vs. non-linear methods

Performance comparisons indicate that linear methods can
achieve very good results comparable to state-of-the-art non-
linear regression algorithms. In fact, when using an appropriate
EMG feature representation and a proper regularization the
results with ME are almost indistinguishable from those of
non-linear methods. A major advantage of linear methods is
the dramatically reduced computational demand for training
and evaluation; both LR and the ME model are convex
problems that can be solved very efficiently. Moreover, linear
methods are less prone to over-fitting than non-linear methods.
LR and ME can be easily realized on a very simple and cheap
micro-controller with little power consumption and are readily
modified for real-time adaptation. In contrast to linear methods
non-parametric models like KRR suffer from large memory
requirements and significantly longer evaluation times for
large calibration data sets. Parametric non-linear modelssuch
as artificial neural networks on the other hand do not require
as much memory and are relatively fast during evaluation,
but training can be slow and they required longer calibration
sessions.

V. CONCLUSION

We systematically compared state-of-the-art regression tech-
niques for independent simultaneous and proportional myo-
electric control. Linear and non-linear methods were compared
under carefully designed experimental paradigms in order to
assess their performance in terms of accuracy and robustness
targeting clinical requirements.

We identified that a logarithmic transformation of the well
established variance feature linearized the relationshipbetween
EMG and wrist angles. This allows to apply very simple and
computationally cheap linear methods.

The models generalized very well to DoF-combinations for
which no training data was provided. This indicates that the
log-var feature space is also linear with respect to DoFs and
that it is not necessary to record training data for all possible
combinations of DoFs.

An additional linearization was achieved by separating
movement in opposing directions, which is motivated by the
fact that opposing movements are controlled by different
sets of muscles. The resulting ME algorithm represents a
promising candidate for the next generation of prosthetic
devices. If adequately regularized, it performs similarlyto,
or better than more complex non-linear methods, even when
only little training data is available. It is superior in terms
of computational cost during both calibration and prediction
phase and can be implemented on a very simple hardware. By
including one subject with congenital limb deficiency we have
shown that our findings transfer well to potential users of myo-
prostheses. Future studies will explore the case of co-adaptive
learning strategies [32].
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