
IntroductionIntroductionIntroduction

Cancerous tissue exhibits altered metabolite concentrations as 
compared to normal brain tissue. Magnetic resonance spectroscopy
imaging (MRSI) reveals such abnormalities in altered spectral 
profiles.

Although the relations between spectral profiles and histological 
findings are well established, the significant variability of in vivo
spectra, which is due to the heterogeneity of tumor tissues, large 
voxel sizes, and the mixture of normal brain tissues with infiltrative 
tumors (partial volume effect) , often limits their diagnostic 
potential. This variability complicates tumor diagnosis and grading, 
as well as the determination of tumor spatial extend. Different 
spectral analysis methods are being developed to address this 
problem. 

Previously we proposed an algorithm called constrained non-
negative matrix factorization [1] that extracts constituent spectra 
associated with different tissue types by simultaneously analyzing all 
voxel spectra. In principle this method solves the partial volume 
effect as it determines also the proportion with which each 
constituent spectrum contributes to an individual voxel spectrum. 
The algorithm was shown to extract spectral profiles and their 
spatial distributions consistent with normal and cancerous tissue. 
Here we present results on 10 clinical MRSI scans of various brain 
tumor types and demonstrate the reduced variability of normal brain 
tissue across subjects. 
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StrategyStrategyStrategy

●The raw data from 10 patients with brain tumor is provided by 
Memorial Sloan-Kettering Cancer Center. 

●Preprocessing, which includes water suppression, phase 
corrections, and frequency alignment etc. , produces conventional 
spectrum.

●Spectral separation is used to reduce the variability of MRSI spectra 
and to obtain a more consistent relation between spectral profiles 
and tumor type and grade.

●A pattern recognition tool that classifies the extracted spectral 
profiles into tumor types and grades for a given patient population 
as an automated aid for tumor diagnosis is being developed. 
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Figure 1: Sketch of spectral separation approach 
(not real data). Spectra of multiple voxel X are 
simultaneously analyzed and decomposed into 
constituent spectra S and the corresponding 
intensity distributions A. The extracted constituent 
spectra can be identified by comparing them to 
known spectra of individual tissue types gray 
matter(GM), white matter (WM), necrotic tissue 
(Nec.), proliferative tumor (Prol.), macromolecule 
baseline (MM), residual modeling error (Err.).

X = A S + N 

where the columns in A represent the abundance of the 
constituent tissue and the rows in S are the corresponding 
spectra. N represents additive noise. The abundance matrix A
has one column for each tissue type and one row for each 
voxel.  X and S have one column for each resonance frequency. 
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Extracted spectra and anatomical concentration distribution are 
consistent with classical diagnosis: tumor tissue has increased 
choline (CHO) and reduced NAA (N-acetyl-aspartate), which 
indicate that this algorithm may has potential value for diagnosis of 
brain tumor.

The variability of in vivo spectra is due to the partial volume 
effect, and our algorithm is effective in reducing this variability. 

The next step is to develop a pattern recognition tool to extract 
diagnostic information from the recovered spectra and to facilitate 
tumor grading and classification using more metabolic parameters
as well as the structure information from the MRI.

Spectral profiles are variable due to the heterogeneity of tumor tissue, 
large voxel sizes, and the mixture of normal brain tissue with infiltrative
tumors. The variability complicates tumor diagnosis and grading, as well as 
the determination of tumor spatial extend. A typical MRSI voxel often 
contains a combination of different tissue types, such as normal brain tissue, 
necrotic and cystic tissue, tumor tissue of different grades, etc [2,3,4]. In 
order to reduce the variability of MRSI spectra and obtain a more consistent 
relation between spectral profiles and tumor type and grade, we use a 
spectral separation method base on an algorithm known as non-negative 
matrix factorization (NMF). This algorithm represents each voxel's spectrum 
as a linear combination of constituent tissue types, each with a consistent 
spectrum across many voxels, and produce spectral images that quantify the 
abundance of each constituent tissue [5].
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Figure 2:Comparison of conventional MRSI spectra (left) with the results of spectral separation (center, right). 
Left: Conventional spectra are overlaid on FLAIR image and zoomed in to show the tumor region. Center: The 
extracted spectral abundances – matrix A in equation (1) – are converted to a color between blue and red 
indicating the abundance ratio of normal and tumor spectra. This color is combined with the intensity of the 
FLAIR image. The white box in the two images outlines the same scan area. Left: Three spectra have been 
extracted. Their profile is indicative of normal tissue with high NAA content at 2ppm (top), and tumor tissue 
with high CHO at 3.2ppm (center). The third spectrum (bottom) captures residual baseline activity. The 
separation algorithm was applied to the spectrum only in the frequency range shown here. Other frequency 
bands contain mostly noise for these scans. 
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Figure 3: Effect of separation on CHO and NAA maximum peak heights. Top left: Example spectra after spectral separation. The 
two spectra – shown here as example – are the result of the separation algorithm on a scan of a high grade glioma. The first 
spectrum corresponds to normal tissue and the second spectrum to the glioma. The arrows indicate the location where CHO and 
NAA maximum peak heights were measured. Top right: Reduced variability after spectral separation. The NAA and CHO peak 
heights define a point in this scatter plot, each point corresponding to a different spectrum. The original voxel spectra are shown 
in blue while the separated spectra are shown in red. All voxels included in this graph have been determined to contain only 
normal brain tissue. The scatter outlined by the ellipsoids indicates one standard deviation from the mean. The reduced scatter 
after separation is evident indicating a reduced variability. Bottom left: Illustration for classification before spectral separation. 
The scatter plot here also shows the peak heights of spectra corresponding to tumor tissue (colored symbols). Normal brain tissue 
spectra are indicated as black asterisks. The solid line dividing the two groups indicates an optimal linear classifier. Note that the 
standard clinical criterion of CHO/NAA concentration ratio corresponds to a line through the origin.  Bottom right: Illustration 
for classification after spectral separation. Points indicate maximum peak heights for spectra after separation. Each of the 10 
cases contributes only two points corresponding to the extracted spectrum for normal and tumor tissue. Note the reduced overlap 
of the tumors with normal tissue when comparing the two bottom graphs. The dashed line indicates a possible decision boundary 
to further differentiate between different tumor types (the red ∆ on the left of the dashed line and the green x on the right 
corresponds to a scans with low SNR for which we do not obtain reliable separation). 
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