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Adaptive auto-regressive proportional myoelectric control
Carles Igual, Jorge Igual, Janne M. Hahne and Lucas C. Parra

Abstract— In proportional myographic control one can control
either position or velocity of movement. Here we propose to
use adaptive auto-regressive filters, so as to gradually adjust
between the two. We implemented this in an adaptive system
with closed-loop feedback, where both the user and the machine
simultaneously attempt to follow a cursor on a two-dimensional
arena. We tested this on 15 able-bodied and three limb-deficient
participants using an 8-channel myoelectric armband. The human-
machine pairs learn to perform smoother cursor movements with
a larger range of motion when using the auto-regressive filters,
as compared to our previous efforts with moving-average filters.
Importantly, the human-machine system converges to an approxi-
mate velocity control strategy resulting in faster and more accurate
movements with less muscle effort. The method is not specific
to myoelectric control and could be used equally well for motion
control using high-dimensional signals from reinnervated muscles
or direct brain recordings.

Index Terms— Adaptive linear filtering, Recursive Least
Squares, Electromyography, Control, Prosthesis.

I. INTRODUCTION

Electromyographic (EMG) signals are small electric potentials
generated during muscle contractions [1]. They can be measured non-
invasively on the surface of the skin. As their amplitude increases
with increasing muscle force, EMG signals can be utilized for
proportional control. In rehabilitation this is successfully used to
control electrically powered hand and arm prostheses from EMG-
signals of the residual muscles [2]. In conventional myoprostheses,
two bipolar EMG-signals are placed on antagonistic muscle-groups,
such as the wrist extensors and flexors, and are used to control the
velocity of one degree of freedom (DOF) [2]. Extending this concept
to more DOFs is usually not directly possible because typically not
enough independent control signals are available. In commercially
available prostheses, cumbersome switching concepts are used to
control multiple functions sequentially.

Research efforts over the past decade have extracted more complex
control information of a larger number of EMG-sensors with machine
learning techniques [3]–[6]. Most work focused on classification-
based approaches, which in its original form were still restricted to
sequential on/off control of each individual function. Extensions of
this work allow for a proportional control [7] and combined activation
of multiple functions [8], but the highest flexibility is obtained by
a continuous mapping of EMG features into control signals using
regression techniques [9]–[14].

A challenge in most mapping algorithms is obtaining reliable
labels for supervised training. While in able-bodied individuals the
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kinematics [11], [12] or forces [9], of the actual limb can be
measured, in prosthetic end-users this is not possible. One approach
is to perform bilateral mirrored contractions, but this implies certain
errors and is limited to unilateral amputations [15]. Alternatively,
one may rely on visual cues given to the participants as targets
under the assumption that participants can reliably follow these cues
[16]. However, “blindly” generating consistent muscle contractions
is difficult and so here we provide real-time visual feedback to help
participants follow a desired target movement. In this approach, both
the user and the learning algorithm attempt to follow a common
target, whereby humans adjusts muscle force in real-time and the
machine simultaneously adapts its control parameters. As a result,
the human and the machine can in principle concurrently adapt to
converge to a common control strategy.

The present work follows our previous efforts to learn continuous
movement control in 2D [12], while providing closed-loop, real-
time feedback to the user [17]. We ask able-bodied participants
to generate muscle contractions that result in 2D wrist movement
(wrist flexion/extension, ulnar/radial deviation). Myoelectric activity
is recorded from the forearm by a wearable armband with 8 channels.
This activity is then used to predict an intended movement target on a
circular arena shown on a computer screen (see Figure 2). Previously,
we have used linear regression to predict location from instantaneous
EMG-amplitudes. With such linear proportional control, stronger
muscle contractions lead to larger cursor displacements, i.e., muscle
contractions control the position of the target [12].

In position control, the position is maintained as long as the
user maintains the muscle contraction. This can be tiring and would
quickly cause fatigue when holding objects. Therefore, in most com-
mercial prosthetic devices, the velocity is controlled proportionally
to the EMG amplitude instead, i.e., the strength of the contraction
controls the speed of movement. If the user relaxes, the prosthesis
remains in the current position and an antagonistic contraction is
required to revert the movement. However, because it is difficult to
visually estimate and replicate the velocity of an object, training of
regression algorithms by visual cues are typically done in a position
control mode. In the current work we present a novel, more general
control concept, that is not restricted to either position control or
velocity control. The algorithm is capable of incorporating both
control schemes including intermediate combinations of both. The
goal is for the control strategy to emerge naturally from a closed-
loop interaction of the human and machine, rather than imposing
position or velocity control arbitrarily through the design.

II. AUTO-REGRESSIVE APPROACH

Our approach is to explicitly use the current position to predict
the next intended location. This leads to an auto-regressive predictor
that is more flexible than either position or velocity control. To
clarify the importance of using an auto-regressive filter consider the
following. Denote the 2-dimensional position that we would like to
control as y(t), and the M -dimensional myolectric control signal
as x(t) (typically related to the EMG signal power). In its simplest
form, proportional controls implies y(t) = Bx(t) (ordinary linear
regression), which is what we implemented in [12]. To implement
velocity control, the input has to be able to modify the difference of
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the current from the previous position, y(t)− y(t− 1) = Bx(t). In
other words, we need an auto-regressive structure: y(t) = y(t−1)+
Bx(t). To gradually adjust between position and velocity control we
should allow for additional coefficients: y(t) = Ay(t− 1)+Bx(t).
When A = 0 we have pure position control, when A = I we
have pure velocity control. More generally, we will allow these
coefficients A and B to be multi-input multi-output (MIMO) filters:
multiple temporal inputs are filtered in time to generate multiple
outputs in time (not just instantaneous mapping). In doing so we
can filter the input, for instance, to smooth the noisy fluctuations of
myographic activity (with q tabs of a moving-average (MA) filter:
Bk, k = 0 . . . q). With an auto-regressive (AR) filter we can take a
variable history into account for computing velocity or acceleration
on a variable time-scale (with p filter tabs: Ak, k = 1 . . . p). The
most important aspect here is that these filters are not fixed, but
instead, they should be adapted to best match the behavior of the
human when presented with the task. In total, we are proposing and
adaptive ARMA-MIMO system that attempts to predict the desired
locations y(t) recursively from the myographic signals x(t):

y(t) =

p∑
k=1

Ak(t)y(t− k) +
q∑

k=0

Bk(t)x(t− k) (1)

The mathematical derivations that follow are established theory of
adaptive IIR filtering [18]–[20]. We reproduce this theory here to
tie it into the context of myographic motor control, to motivate the
choices we made among various recursive algorithms, and to provide
explicit equations for implementation. Note that during training the
filter matrices Ak(t) and Bk(t) are themselves dependent on time
as they will be adjusted so that y(t) matches a desired target location
d(t). Figure 2 shows a snapshot of such a target d(t) as a green circle
and the current position y(t) as a red cross. While the adaptive filter
algorithm tunes filters Ak(t) and Bk(t), the user is concurrently
generating myoelectric signals x(t) to move the red cross to the green
target. Generally the user will vary x(t) on a rapid time scale of less
than a second, whereas the filter parameters are adjusted on a slower
time scale of many seconds or minutes. The human learner can also
adjust strategy of movement on this slower time scale. The concurrent
learning system is expected to converge due to the common training
goal (reducing the distance of current position to target) and assuming
an appropriate choice of learning constants to prevent instabilities (we
touch on this in more detail in the Discussion section).

For myoelectric control the feature-vector x(t) will be a nonlinear
function of the raw myoelectric signals, such as the root-mean-square
of the broad-band signals or more complex time or frequency domain
features [12]. Note that when p = 0 in eq. (1), the output has a
finite impulse response (FIR) and when p = q = 0, we obtain
the instantaneous linear regressor proposed in [17] (although there
the temporal filter was fixed to be an exponentially MA). Here we
extend over this prior work by adding the auto-regressive filter Ak,
which results in an infinite impulse response (IIR). In all experiments
we will compare the performance of the FIR system with the new
adaptive IIR filter structure proposed here.

In order to simplify the problem, we will assume that y1(t) and
y2(t) are independent; this means that the axes that determine the
two wrist angles, the flexion-extension axis, and the radial-ulnar
axis are independent [12]. Assuming this independence, the matrices
Ak(t) are diagonal, and each angle yi(t) i = 1, 2 can be estimated
separately from previous positions of the same DOF and input signals:

yi(t) =

p∑
k=1

ai,k(t)yi(t− k)

+

q∑
k=0

bT
i,k(t)x(t− k), i = 1, 2

(2)

where ai,k(t) are the corresponding diagonal entries in Ak(t), and
bi,k(t) are the corresponding rows in the filter matrices Bk(t).

We can express equation (2) in a compact form such as:

yi(t) = βTi (t)zi(t), i = 1, 2 (3)

with the coefficients vector βi(t) and the data vector zi(t), both of
which are column vectors of length p + (q + 1)M , and are defined
as:

βi(t) =[ai,1(t), ai,2(t), . . . , ai,p(t),

bi,0(t),bi,1(t), . . . ,bi,q(t)]
T (4)

zi(t) =[yi(t− 1), yi(t− 2), . . . , yi(t− p),
xT (t), . . . ,xT (t− q)]T

(5)

The learning task is to find the β̂i(t) that minimizes the mean
squared error εMSE(t) between the output of the system y(t) and
the desired position d(t), i.e.:

εMSE(t) =

2∑
i=1

E
{
(di(t)− yi(t))2

}
(6)

This is called the output-error formulation [20], since the filters
are estimated using the mean squared-error of the output y(t). Once
the filters β̂i(t) are calculated, the estimate of the current position
ŷ(t) is obtained using eq. (2) and the error can be obtained.

However, notice that with definition (5) z(t) depends on the history
of y(t) and thus it itself depends of the parameters β(t). Through
this recursive dependence the error is a non-linear function of the
parameters βi. Nevertheless, since eq. (3) resembles a linear regres-
sion problem, it is called a pseudolinear regression. The nonlinearity
implies that the cost function is not a quadratic function, so the linear
estimate can be suboptimal.

III. ADAPTIVE FILTERING OF THE EMG SIGNALS

An adaptive approach to the problem is particularly important in
the context of closed-loop feedback. The user can in principle change
the control strategy in real-time, and so the optimal mapping between
EMG signal and target location should be able to adjust to the current
control strategy. Our goal is to continuously adapt the coefficient
sample by sample, instead of recalculating the coefficients with a
batch of training data, and then having the user adjust to the new set
of coefficients as in our previous work [17].

The main idea behind the adaptive methods is that the new estimate
is obtained from the previous estimate by moving in the direction
that minimizes the MSE in eq. (6). Since the negative gradient vector
points in that direction, we just have to calculate the partial derivatives
of the MSE with respect to the coefficients of the system.

The updating rule is:

β(t+ 1) = β(t)− µ∇εMSE(t), (7)

where ∇εMSE(t) is the gradient and µ the step size. The gradient
requires the calculation of the expected values. Since we do not
know the distributions, these expectations must be estimated. The
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simplest solution is to remove the expectation operator; i.e., to use the
instantaneous value, obtaining the least mean squares LMS algorithm
[18]. Calculating the gradient vector, the updating rules for the
coefficients in βi are:

ai,k(t+ 1) = ai,k(t) + µei(t)
∂yi(t)

∂ai,k(t)
, k = 1, . . . , p (8)

bji,k(t+ 1) =bji,k(t) + µei(t)
∂yi(t)

∂bji,k(t)
,

k = 0, . . . , q; j = 1, . . . ,M

(9)

where ei(t) is the instantaneous error at time t, i.e., ei(t) = di(t)−
βTi (t)zi(t). The partial derivatives in the preceding equations are
given by:

∂yi(t)

∂ai,k(t)
=yi(t− k) +

p∑
l=1

ai,l(t)
∂yi(t− l)
∂ai,k(t)

,

k = 1, . . . , p

(10)

∂yi(t)

∂bji,k(t)
=xj(t− k) +

p∑
l=1

ai,l(t)
∂yi(t− l)
∂bji,k(t)

,

k = 0, . . . , q; j = 1, . . . ,M.

(11)

The second term in the right hand side of eq. (10,11) is due to the
recursion model, since the estimated position at time t depends on the
p previous positions, and, each of these depends on the coefficients.

In eq. (10,11) we have an additional problem. The equations are
not recursive; i.e., they depend on the present value of ak(t) and
bk(t) (do not confuse a recursive system with a recursive algorithm).
If we use a small step size µ, we can assume that the coefficients are
changing slowly, so:

∂yi(t− l)
∂ai,k(t)

' ∂yi(t− l)
∂ai,k(t− l)

(12)

∂yi(t− l)
∂bji,k(t)

' ∂yi(t− l)
∂bji,k(t− l)

(13)

Using this approximation in eq. (10,11), we obtain:

∂yi(t)

∂ai,k(t)
' yi(t− k) +

p∑
l=1

ai,l(t)
∂yi(t− l)
∂ai,k(t− l)

k = 1, . . . , p

(14)

∂yi(t)

∂bji,k(t)
' xj(t− k) +

p∑
l=1

ai,l(t)
∂yi(t− l)
∂bji,k(t− l)

k = 0, . . . , q; j = 1, . . . ,M.

(15)

So we can obtain the approximations of the derivatives ψai,k (t) =
∂yi(t)
∂ai,k(t)

and ψ
b
j
i,k

(t) =
∂yi(t)

∂b
j
i,k

(t)
in a recursive calculation:

ψai,k (t) =yi(t− k) +
p∑

l=1

ai,l(t)ψai,k (t− l)

k = 1, . . . , p

(16)

ψ
b
j
i,k

(t) =xj(t− k) +
p∑

l=1

ai,l(t)ψb
j
i,k

(t− l)

k = 0, . . . , q; j = 1, . . . ,M

(17)

Note that the derivatives in eq. (16,17) are delayed versions of
yi(t) and xj(t) filtered by the time-varying recursive filter ai,k(t).

We call this the IIR LMS algorithm. This algorithm estimates p+
q ×M − 1 parallel filters at every iteration; this requires a lot of

storage and computational resources. With the assumption that the
step size µ is small, we can obtain a simplified IIR LMS algorithm.
Since the coefficients ai,k(t) do not vary too much in intervals of
length p, ai,k(t) ' ai,k(t−1) ', . . . ,' ai,k(t−p), we can assume
that they are time invariant in that period, and we can exchange the
order of filtering and delay operations in eq. (16,17). It means that
we can first filter the input and output signals for k = 1 and k = 0,
respectively,

ỹi(t) = ψai,1(t) (18)

x̃ji (t) = ψ
b
j
i,0

(t) (19)

and, then, approximate the other elements in the gradient vectors as
delayed versions of them. This is called the filtered IIR LMS algo-
rithm. It requires only M + 1 filters to approximate the derivatives.

The LMS algorithm updates the parameters according to the gradi-
ent of the instantaneous squared-error (a stochastic gradient descent
method). Another option is to use the recursive Gauss-Newton RGN
algorithm that improves the convergence rate using sample covariance
matrices to control the direction during the updating step. The
algorithm is more complicated, since in every iteration the inverse
of the covariance matrix must be also updated. Nevertheless, the
inversion of the matrix is avoided thanks to the matrix inversion
lemma, reducing the computational cost [19].

The general updating rule for the RGN algorithm for the equation
and output error formulations is:

βi(t+ 1) = βi(t) + µPi(t+ 1)z̃i(t)ei(t), (20)

where z̃i(t) is the filtered version of the data vector, ei(t) is the
error with the current coefficients ei(t) = di(t)− βTi (t)zi(t), and
P−1

i (t) an estimate of the Hessian matrix that is updated by:

P−1
i (t+ 1) = λP−1

i (t) + γz̃i(t)z̃
T
i (t) (21)

with λ the forgetting factor that controls the weight of previous values
in the current estimate. Typical values (see [20]) are λ = 0.9, . . . , 1,
and λ = 1− µ, γ = 1.

The inversion of the matrix is avoided using the matrix inversion
lemma, and the updating rule becomes:

Pi(t+ 1) = λ−1

(
Pi(t)−

Pi(t)z̃i(t)z̃
T
i (t)Pi(t)

λ/γ + z̃Ti (t)Pi(t)z̃i(t)

)
(22)

The difference with the LMS algorithm is due to the Pi(t)
matrices. So, if these matrices are equal to the identity matrix, both
algorithms are the same and depending on the equation or output-
error formulation that is chosen, we get the LMS algorithms explained
previously.

The implementation of the filtered IIR RGN algorithm is summa-
rized as follows:

Initialization,
Iteration (t = 0, 1, . . .),

for i = 1, 2:
Error estimate:

yi(t) = βTi zi(t) (23)

ei(t) = di(t)− yi(t) (24)

Filter signals:

ỹi(t) = yi(t) +

p∑
l=1

ai,l(t)ỹi(t− l) (25)

x̃ji (t) = xj(t) +

p∑
l=1

ai,l(t)x̃
j
i (t− l) (26)
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z̃i(t) =[ỹi(t− 1), ỹi(t− 2), . . . , ỹi(t− p),
x̃T (t), . . . , x̃T (t− q)]T

(27)

Update:

Pi(t+ 1) = λ−1

(
Pi(t)−

Pi(t)z̃i(t)z̃
T
i (t)Pi(t)

λ/γ + z̃Ti (t)Pi(t)z̃i(t)

)
(28)

βi(t+ 1) = βi(t) + µPi(t+ 1)ẑi(t)ei(t) (29)

Updates of the AR coefficients are only executed if they lead to stable
recursion (i.e. the poles of the AR coefficients remain within the unit
circle).

Note that if we remove the filtering step, we obtain a pseudolinear
regression algorithm. If we substitute the output signal by the
observed output, i.e., we follow an equation-error instead of the
output-error formulation, p = q = 0 (there is no feedback nor
memory in the system) and µ = γ = 1, the algorithm is the same
that the exponentially weighted recursive least squares algorithm. The
cost function is a modification of the least-squares cost function, by
incorporating a forgetting factor λ so recent samples are weighted
more strongly in the error computation:

εERLS(T ) =

T∑
t=1

λT−t|d(t)− y(t)|2 (30)

Note that eq. (30) is the cost function used in [17], i.e., the recursive
version of the linear regression solution. The algorithm in [17] is
adaptive, but the system is not recursive, so there is no feedback
between the past and present positions, nor between the past EMGs
observations and the current position. The exponential factor allows
to obtain a weighted covariance matrix in order to accommodate the
time varying nature of the signals.

IV. EXPERIMENTAL PARADIGM

A. Data Acquisition

We use a Myo Armband from Thalmics to acquire the EMG
signals. It has a flexible diameter to fit a forearm circumference
between 7.5 to 13 inches. It has eight bipolar EMG electrodes and
samples the EMG at 200 Hz at 8 bit resolution. This does not cover
the entire EMG-spectrum and would be insufficient for more complex
feature-extraction, but is sufficient for extracting simple amplitude
features. Signals are transferred to the computer via Bluetooth. A
Matlab program is executed in order to acquire and process the data
in real-time. We use Matlab 16a 64 bit version running on a 2.6 GHz
personal laptop with 8 GB RAM.

We use log-variance of the EMG signals as the input feature vector
x(t), with variance computed in a time window of 200 ms and
updated every 40 ms as in [12] (t is sampled at 25 Hz). The sensors
are placed in the same position and orientation for all participants
(upper part of the forearm, close to the elbow with the LED light of
the device pointing to the same direction). Fifteen able-bodied partic-
ipants were tested (8 males, 7 females) with ages ranging between 20
to 50 years. We also tested two male individuals and a female with
limb deficiency; one amputee (with a 20 cm stump; Figure 1) and
two congenital (with a 10 cm and a 25 cm stump respectively). All
individuals provided written informed consent before the experiment.
The experiments were in accordance with the declaration of Helsinki
and were approved by the UPV ethics committee, approval number
P11-23-03-18.

(a) (b)

Fig. 1. (a) Amputee participant using the Myo Armband. (b). Able-
bodied participant using the Myo Armband.

B. Study Design

Participants sat in a comfortable position in front of a computer
screen, with the elbow of the arm resting on the table and flexed by
nearly 90 degrees. The able-bodied ones were instructed to relax the
hand so that forearm activity was only dedicated to wrist motions.
After the armband was placed on the forearm of the participant and
connected to the computer, the device was initialized. The experiment
consisted of a training and testing phase as follows.

(a) (b)

Fig. 2. (a) User-feedback screen during training experiment. Red cross:
estimated position. Large green circle: current target position. Small
green circles anticipate future target positions. (b) The 36 targets placed
in 3 different radii (0.3, 0.6, 0.9) for the test experiment. There are 6
targets in the inner circle, 12 in the intermediate and 18 in the outer
circle.

1) Training phase: Figure 2(a) shows the user-screen during
training. The center of the coordinate system corresponds to the
neutral position and the two axes to the two DOFs controlled in
this study. The green circle indicates the desired target position d(t)
and the red cross is the current estimated position y(t). This display
is updated at the same 25 Hz rate (40 ms) as the adaptive filter
equations. Before the start of the training phase participants are
familiarized with the closed-loop user feedback shown in Figure 2(a).

Training of the IIR system: The three small circles indicate
the direction of movement for the upcoming target positions. This
helps the user prepare for the upcoming movement and maintain
muscle contractions synchronized with the desired target locations.
We defined a set of simple trajectories in the flexion-extension (right-
left) and radial-ulnar (up-down) axes that were paced with a constant
speed that participants could easily follow without significant delays.
The target starts in the center. Then it moves during 6 seconds from
center to the right side. Once it reaches the right-most position, it
returns back to the center in 6 seconds without stopping at any
location. The same is done for the up, left and down directions.
This four movement directions defines a lap. The training experiment
consists on five consecutive laps, totaling 240 s of training. The order
and time of these target movements are identical across participants.
The users were instructed to move their wrist so that the red cursor
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follows the green circle. For example, in Figure 2(a), participant
would have to conduct a left movement with his/her wrist. They
were instructed not to worry even by larger deviations from the
target, but to try their best and remain focused on the task. For the
able-bodied individuals it was easy for the experimenter to monitor
their effort. During the training phase the Ak and Bk parameters are
continuously adjusted using the filtered IIR RGN algorithm explained
in the previous section. Here we used p = 1, q = 0, i.e. we used the
immediately preceding position and the instantaneous input (without
temporal filtering).

Training of the FIR system: As comparison to the new recursive
IIR algorithm we test a FIR structure with the same training procedure
as in [17]. Briefly, a target circle is first shown at the center to start
at a neutral position. When the red cross is at the center a target
appears at one of the outer-most positions, directly to the right, up,
left or down. The participant has to move the forearm till it arrives
at this target. The users have 20 seconds to hit the target, after which
the next target appears. After reaching the target and maintaining
the red cross inside the green circle for 1 s (a hit) the target circle
jumps back to the center. If the target is not hit within 20 seconds,
it also jumps back to the center. The process repeats with the other
three directions. This is considered one lap and total training consists
of 5 repeated laps. During the training phase the Bk parameters of
the algorithm are continuously adjusted using the FIR algorithm in
[17]. That algorithm is the same as the one in our model in eq. (1)
with p = 0, q = 0, i.e. no recursive feedback of position is used,
but the input is filtered, and an additional post-processing step (an
exponential moving average filter) is used to smoothen the output
(see [17] for the details).

2) Test phase: The test phase starts after the 5 training runs were
completed and is identical for the IIR and FIR systems. During the
test-phase the parameters of the algorithm were kept constant. In the
test phase, the goal for the participants is to move the red cursor to
various target locations (indicated by the green circle) and maintain
this location for at least one second. The task was similar as in the
training FIR phase, targets were static. If the target was reached in
less than 20 seconds and maintained for 1 second it was counted
as a hit, otherwise it was counted as a missed target. After each hit
or miss, a new target was shown at a new pseudo-random location.
Eventually a total of 36 uniformly distributed target positions were
presented with no repetition (Figure 2(b)). The targets were shown
in the same pseudo-random order for all participants. Note that the
targets include regions that have not been explored during training.
Therefore, we are also testing the ability of the algorithm to generalize
and to avoid over-fitting.

To control the effects of fatigue and practice, we divided partici-
pants into two groups. One group first trains and tests with the FIR
system and after that with the IIR system. The other group does the
opposite. We set the learning constants to µ = 1 and λ = 1 during
training so the algorithm is effectively integrating across all samples.

V. RESULTS

A. Real-time adaptation during training

To gain a sense for the speed of adaptation of the system during
closed-loop training, we first show the learning process for one user
in Figure 3. The panels show the FIR and IIR coefficients (bi and
a1) for the flexion-extension direction as they adapt in time. In this
example, the FIR coefficients start to converge after the first lap (48
seconds), while the IIR coefficient is learned in just 15 seconds. In
Figure 4 we show the position and error during training. The first
two panels show the moving target (black) and the cursor position
(color) generated by two users during training. The position error

increases whenever the target moves ahead of the users response,
but decays over the total duration of the training session. The same
trend is observed for the instantaneous error averaged over the 15
participants as shown in the third panel. A repeated measures ANOVA
on the mean position error of the five repeated training laps shows that
position error is reduced over time (F (14) = 32.9, p = 3 · 10−7,
with time coded as a continuous predictor variable). In particular,
there is a reduction of error between the last two laps (paired t-test,
t(14) = 3.2, p = 0.007).

Fig. 3. Parameter adaptation during training. The first row shows the
eight FIR coefficients bi as they develop in time during training for
one representative able-bodied participant. The second row is the IIR
coefficient a1 in that same time period. Coefficients are shown here
for the flexion-extension direction only. Note that the IIR coefficient
converges almost immediately to a1 = 1, which corresponds to
velocity control. Results are similar for other participants and in radial-
ulnar direction. Gray vertical lines indicate start/end of the five repeated
training laps with identical target trajectories.

B. Performance gains of IIR system during the test phase

We observed during the test phase that participants produced
smoother trajectories and wider range of movement when using the
IIR system. In contrast, the FIR system required more force and some
participants had a limited range of movement in some directions.

To quantify performance numerically we measured the completion
rate, defined as the number of targets hit (reached within 20 seconds
and held for 1 second) over the total number of targets (36). To
evaluate the efficiency and ease-of-use we also calculated the path-
length during the entire test session, including hits and misses.
Secondary outcome measures were path efficiency (path length over
shortest distance to target, averaged over all targets), completion time
(average time to a target, missed targets count as 20 seconds), and
attempt ratio (number of times entering the target area over number
of hits).

Test phase performance of the closed-loop learning algorithm was
evaluated for all participants with both FIR and IIR algorithms. Figure
5 shows that the rate of targets hit increases in all but one participant
by addition of the auto-regressive filter structure (IIR). At the same
time, the length of the path to reach the targets is reduced for all
participants. A Wilcoxon signed rank test shows that difference in rate
of hits as well as in path length are statistically significant (p = 0.005
and p = 0.00006, respectively with N = 15).

With the IIR method, 95% of the targets were hit, with perfect
performance for half the users (no targets were missed). Of the 5%
that were missed, 90% were missed due to the 20 seconds time
limitation. A color map of the interface is shown in Figure 6. Only
one position was missed by three out of fifteen participants (orange
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Fig. 4. Performance during training. First and second row indicate the
instantaneous position of the user-machine system during training for
both axes. Able-bodied participant (red), a participant with limb defi-
ciency (blue) and target (black). The third row shows the instantaneous
error during training averaged over all 15 able-bodied participants.
Shaded area indicates standard error of the mean across participants.
Gray vertical lines indicate start/end of the five repeated training laps
with identical target trajectories.

Fig. 5. Test phase performance in able-bodied individuals. Each line
is a participant. Completion rate increases or stays the same for IIR
structure. Average path length to reach a target is shortened for all 15
participants when using the IIR structure. Line color indicates the value
a1 learned by the IIR filter (in the IIR condition) for one axis. Evidently
almost all participants learned velocity control, i.e. a1 ≈ 1. There is a
single exception with a1 = 0.54 (the blue line).

circle) while many targets were hit by everyone (electric green circles)
and some of them were missed by one or two participants (clear green
circles). For the FIR algorithm, hit rate was around 85% and there
are targets that were missed by 3 people (orange), 4 (light red) and
5 or more times (dark red). Only one participant got a perfect score.
The FIR errors were located in the outer positions indicating the
FIR learning algorithm is limited in gain. This could be the result
of a non-linear relation between EMG and displacement, whereby
the linear gain b0 is suitable in the inner range, but not for larger
displacements. In contrast, the IIR system has no range limitation as
the cursor can in principle continue moving if the user/machine pair
learned velocity control, i.e., a1 = 1.

The results on the secondary outcome measures are shown in
Figure 7. Path efficiency is improved similarly to overall path-

Fig. 6. Number of missed targets over all 15 able-bodied participants
during the test phase.

length, as it is the same measure except that it is normalized by the
shortest length to reach a target. Completion time is faster for most
participants when using the IIR system (11 out of 15). In general,
movement was slower and better controlled, which explains why
some participants did not gain in speed despite improving on all other
measures. Attempt ratio captures the ability to reach and maintain the
target for the prerequisite 1 second. A ratio of 1 indicates that the
participant never exited the target area prematurely. Evidently, the IIR
system allows significantly better control to hold the position, despite
velocity control. To visualize the difference in path efficiency, we plot
in Figure 8 the trajectories of one participant for both algorithms.

Fig. 7. Secondary outcome measures for able-bodied individuals during
test phase. Each line/symbol is a participant. IIR structure improves the
path efficiency and reduced the number of attempts needed to hit a
target for all users. Completion time does give mixed results. Same color
map used as in Figure 5.

Fig. 8. Trajectories following the 36 targets during the test phase for
one user. The IIR trajectories are smoother and shorter than for the
FIR filter. This participant does not reach some areas in the FIR case.
The right panel compares the trajectory from one target to the next for
another participant. The blue line is the IIR method; the red line is the
FIR algorithm. The IIR trajectory (blue curve) is smoother than the FIR
trajectory (red curve) and takes less time and effort.

In Figure 8 we also compare the paths from an inner to an outer
target achieved with both methods (blue: IIR, red: FIR). With both
algorithms, the user was able to hit the outer target, but the FIR path
is much more erratic and clearly shows the effort that was required.
As an example of the user experience, we show the last seconds of the
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testing phase for the FIR and IIR algorithms for the same participant
in the video [21].

C. Results on participants with limb deficiency

Able-bodied individual rely on actual wrists movements during
training and testing. To demonstrate that this is not required with
the closed-loop feedback, we recruited three individuals with limb
deficiency (Figure 1). The identical training and testing was used
as before. These individuals relied purely on visual feedback on the
screen to guide their muscle contractions. Performance is numerically
lower in these individuals, as compared to able-bodied participants.
We ascribe this to the lower EMG signal strength we observed in
these participants, in particular for the individual with a shorter stump.

All performance metrics showed a performance benefit with the
IIR system (Figure 9). The number of hits increases, the total path
length, is reduced almost by 40% and the efficiency of the trajectories
increases accordingly. The attempt ratio is improved in all participants
and is close to 1 with the IIR. This indicates that when the target was
reached, it was easy to maintain the position. When inspecting the
coefficients found by the IIR algorithm we find again that the a1 ≈ 1,
meaning that this human-machine pair again learned velocity control.

Fig. 9. Performance metrics for the participants with limb deficiencies.
Same metrics as in Figure 5 and Figure 7. Same color map is used also
for a1 values.

VI. DISCUSSION

We have demonstrated here the benefits of learning recursive filters
for proportional myographic control. The recursive filter allowed us
to seamlessly titrate between position and velocity control. Given
these options, the human-machine system naturally converged to a
velocity-control strategy. Velocity-control is known to have a number
of benefits in practice [22] such as less overall effort for the user and
no limitations of the range of motion (e.g. due to fatigue) . However,
to our knowledge no adaptive strategy has yet been proposed to
directly learn proportional velocity control, and our own previous
efforts had been limited to position control [17]. By introducing a
recursive structure we were able to readily incorporate more general
control strategies into a closed-loop learning mechanism. To do this
we leverage established theory of adaptive IIR filtering [18]–[20].
The novelty lies in relating this theory to myoelectric control, which
allows for a gradual transition between position and velocity control
and an efficient closed-loop training procedure without the need for
manual parameter adjustments.

In the case of the FIR filter, we only learned instantaneous
regression coefficients b0 and used a post-processing filter to smooth
the output signals, following [17]. In the IIR approach proposed in
this paper, this post-processing is not necessary since it is implicitly
implemented in the output recursion. In addition, the human-machine
pair naturally learned a velocity control strategy. Since we are using
a model with only one recursion and instantaneous input coefficients,
this limited number of free parameters allowed us to learn the
coefficients with relatively short training session of a few minutes.

Another practical benefit is that velocity or gain-factors do not need
to be adjusted manually as in other approaches [14], since all factors
are learned during the process of real-time, closed-loop adaptation.

An important caveat of this work is that we have tested the system
on a somewhat artificial 2D cursor movement task and that we have
focused mostly on able-bodied individuals. The preliminary results
with limb deficient participants are nevertheless encouraging. In these
individuals, myographic signals are typically weaker and electrodes
more difficult to place. Despite overall lower performance we find
that the adaptive IIR filter still shows an improvement in this target
group over to the FIR filter. Larger number of participants have to be
tested to determine if these results can be replicated across the more
diverse physiology in this group. Similarly, the proposed strategy
should be tested on a realistic motor control task, ideally using an
actual prosthetic device, e.g. [14], [23].

Here we used a closed-loop learning system where in principle
the human and machine can simultaneously adapt. In contrast to [17],
parameter adaptation is ongoing during the entire closed-loop training
period. The learning rules proved stable in practice despite concerns
that such concurrent adaptations can become unstable [24]. Note
that in the present work we did not quantify or demonstrate human
adaptation (as e.g. done in [25]) and so discussion of co-adaptive
learning are theoretical in nature. The issue of stability of co-adaptive
learning has been studied previously on a theoretical level [26]. The
main observation of that work is that stable co-adaptation may be
achieved as long as one learner adapts slower than the other. In the
example shown in Figure 3, adaptation of the controller happened
relatively quickly (15-50 seconds). This is evidently slower than
the time constant of human motion control (<1 second), but faster
than the time constant a human may use for adapting movement
strategy. This means that the machine is slow enough to allow the
participants to control the specific movement trajectory, yet fast
enough to adapt to the strategy the user is trying to implement.
From the controllers standpoint, the human is quasi-stationary, and
from the humans standpoint, the controller is quasi-stationary as well
(since it stabilizes so fast). The net result is a stable system despite
the closed-loop interaction of the human-machine controllers. For
this stability it is necessary that the user generates consistent muscle
contractions on the time scale of parameter adaptation (approximately
120 seconds here). We believe that providing clear instructions to
the users at the beginning is important in this regard, as well as the
game-like interface which keeps participant motivated to follow those
instructions. The most important aspect of this interface is the real-
time feedback coupled with a consistent goal, namely, the machine
and human continuously attempt to reduce the same error.

Note that the guidance to the user can be suggestive of position
control (“to move further out, try to make a larger effort”) or it
can suggest velocity control (“to move in a given direction, flex
the muscle and just wait for the cursor to move”). We only briefly
experimented with acceleration control, which can be implemented
by allowing two tap-delays A1 and A2 in eq. (1). This can combine
y(t − 1) and y(t − 2) with the current position y(t) to compute
acceleration. Our initial findings suggest that the algorithm performs
equally well, although the overall human-machine control tends to
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overshoot. Admittedly, controlling acceleration may be more chal-
lenging for the user as short flexion forces are all that is needed to
start and stop a ballistic movement. We can also envision controlling
wrist rotation, which is common in prosthetic devices. In that case
we anticipate that participants will require more careful instructions
in order to consistently perform muscle contractions that were not
previously associated with wrist rotation. Future work may explore
this and other training protocols with concurrent human-machine
learning [17], [26], and test for human adaptation following [25],
[27], [28]. In particular, it may be interesting to test whether the
closed-loop strategy used here with concurrent parameter adaptation
leads to co-adaptive learning, and whether this results in performance
gains as compared to off-line training [17], [29].

Finally, we note that nothing about the proposed approach is
specific for myoelectric control. The method could be used equally
well for motion control using high-dimensional signals from re-
innervated muscles [30] as these behave similarly to conventional
myographic signals where signal amplitude increases with effort. The
approach could also be used in brain-machine interfaces [31], [32].
These capture neuronal firing directly from the motor cortex, which
is known to encode both position and velocity of movement [33].
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